
Representation Interpretation with Spatial Encoding
and Multimodal Analytics

Ninghao Liu, Mengnan Du, Xia Hu
Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA, 77843

{nhliu43,dumengnan,xiahu}@tamu.edu

ABSTRACT
Representation learning models map data instances into a low-
dimensional vector space, thus facilitating the deployment of sub-
sequent models such as classification and clustering models, or
the implementation of downstream applications such as recom-
mendation and anomaly detection. However, the outcome of rep-
resentation learning is difficult to be directly understood by users,
since each dimension of the latent space may not have any specific
meaning. Understanding representation learning could be benefi-
cial to many applications. For example, in recommender systems,
knowing why a user instance is mapped to a certain position in
the latent space may unveil the user’s interests and profile. In this
paper, we propose an interpretation framework to understand and
describe how representation vectors distribute in the latent space.
Specifically, we design a coding scheme to transform representation
instances into spatial codes to indicate their locations in the latent
space. Following that, a multimodal autoencoder is built for gener-
ating the description of a representation instance given its spatial
codes. The coding scheme enables indication of position with dif-
ferent granularity. The incorporation of autoencoder makes the
framework capable of dealing with different types of data. Several
metrics are designed to evaluate interpretation results. Experiments
under various application scenarios and different representation
learning models are conducted to demonstrate the flexibility and
effectiveness of the proposed framework.

KEYWORDS
Interpretation; Representation Learning; Recommender Systems
ACM Reference Format:
Ninghao Liu, Mengnan Du, Xia Hu. 2019. Representation Interpretation
with Spatial Encoding and Multimodal Analytics. In The Twelfth ACM Inter-
national Conference on Web Search and Data Mining (WSDM ’19), February
11–15, 2019, Melbourne, VIC, Australia. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3289600.3290960

1 INTRODUCTION
Representation learning has a fundamental impact on the perfor-
mance of downstream machine learning models, especially when
processing raw data inputs such as images [41], texts [2, 26] and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290960

networks [29, 35]. Representation learning is sometimes explic-
itly pursued by models such as autoencoders [37] or embedding
models [26, 29], while it may also implicitly make an effect in
many applications such as multimodal learning [14], recommender
systems [19] and anomaly detection [3]. Data points with similar
properties or semantic meanings are mapped close to each other
in the representation space, where the semantics depend on the
dataset and the task objective.

Although representation learning lays the foundation of the suc-
cess of various machine learning tasks, its interpretability has not
been fully explored. The opacity of representation space originates
from the fact that each of its dimensions may not have any specific
meaning. Current techniques for evaluating the quality of represen-
tation learning focus on the performance of subsequent tasks such
as classification accuracy and recommendation precision. However,
how representation vectors distribute in the latent space, which
directly affects the results of subsequent tasks, is usually opaque
to users. The interpretation of representation result could benefit
the application of machine learning models in several ways. On
one hand, since representation learning encodes various features or
different types of information into the same space, we are interested
in which information sources play an important role and which
ones are actually useless in the learning process. It may help us eval-
uate the effectiveness of representation result. On the other hand,
interpretation could help justify the decisions made by machine
learning models. For example, in recommender systems, especially
those built upon deep models [11, 42] that are usually regarded
as black boxes, we may want to know why certain products are
recommended to the target user.

Understanding the outcome of representation learning is a chal-
lenging problem due to several factors. First, most of the existing in-
terpretationmethods, whichmainly focus on understanding classifi-
cation models, cannot be directly applied to our problem [4, 15, 30],
since there is no notion of classification boundaries or labels. Some
recent work tries to comprehend the embedding space [23], but
interpretation is directly attached to clusters in the space and is not
available for individual instances. Second, a flexible interpretation
framework is desirable, so that its inner modules can easily adapt to
different types of data. Third, visualization techniques [25, 34] are
heavily relied on by users to understand how instances distribute
in the latent space. However, it is difficult to initiate detailed and
objective analysis based on visualization, let alone that the accuracy
of visualization may not even be guaranteed.

To overcome the challenges above, in this paper, we propose a
new framework for understanding the outcome of representation
learning. The framework is post-hoc, so it does not rely on spe-
cific embedding method that outputs the representation instances.

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

60

https://doi.org/10.1145/3289600.3290960
https://doi.org/10.1145/3289600.3290960

Spatial

Encoder

Spatial Code: p
...

...

...

...

...

...

...

...

...
Representation Instances

Affinity Graph

…

Attribute

Matrix
y’ = f(z)

z

p’

y

Multimodal

AutoEncoder

Figure 1: The proposed interpretation approach, whose coremodule is amultimodal autoencoder. Onemodality is spatial code,
and the other is attribute information.

Different from existing interpretation methods that target on classi-
fication models, or provide only cluster-level explanation for unsu-
pervised models, the proposed framework can describe the repre-
sentation space regions with flexible granularity. As the corpus for
generating intuitive description to instances, an attribute matrix is
introduced, which could either be set as the input data to the repre-
sentation learning model (e.g., word tokens in document embedding
tasks) or constructed from side information in the application (e.g.,
tags in recommender systems). Specifically, our framework first
transforms representation instances into spatial codes to indicate
where the instances locate in the representation space. Then, we
train a multimodal autoencoder to establish the relation between
the spatial codes and attribute matrix. After that, the description of
a target representation instance can be generated by only feeding
its spatial code into the autoencoder. The architecture of the au-
toencoder can be determined based on the data type of attributes.
The major contributions of this paper are as follows:
• We design an interpretation framework to understand the out-
come of representation learning. The framework can be applied
to different types of representation learning methods.
• We develop a coding module to represent the spatial position
of representation instances with varying granularity. Also, the
multimodal autoencoder (i.e., the interpretation generator) can
adapt to different types of data.
• We conduct experiments on various machine learning applica-
tions and different representation learning models, to demon-
strate the flexibility and effectiveness of the proposed framework.

2 PROBLEM FORMULATION
2.1 Notations
We use boldface uppercase characters (e.g., A) to denote matrices,
boldface lowercase characters (e.g., z) as vectors, calligraphic char-
acters (e.g.,V) as sets, and normal letters (e.g., i , K) as scalars. The
size of a setV is denoted as |V|. We represent the i-th row of A
as A(i, :), the j-th column as A(:, j), and the (i, j) entry A(i, j). The
transpose of a vector z or a matrixA is denoted as zT orAT (instead
of z′ or A′ which is used to refer to different vector or matrix). z(j)
denotes the j-th entry of the vector. Following the rules above, let
X ∈ RN×K denote the input processed by representation learning,

where there are N objects and each object is associated with K
features. The representation learning generates Z ∈ RN×D , where
D is the dimension of the latent space, and Z(i, :) ∈ RD denotes the
representation instance of the i-th node. We also use z ∈ RD to de-
note a representation instance. In this paper, we use representation
vectors and representation instances interchangeably.

In this paper, we also introduce an attribute matrix denoted as
YN×M as the corpus for interpretation generation. The construc-
tion of Y depends on the application scenarios. In some cases, Y is
extracted from X or even equals to X. For examples, in text mining,
each column of Y could represent the appearance of a word token.
In network analysis, Y could be the side information that describes
the properties of network nodes. In some other cases, Y is disjoint
from X. For example, in recommender systems, Y could be the sum-
mary of customer interests, review contents or visual appearance
of products. The overall principle for constructing Y is that each
attribute in Y should be directly comprehensible to humans.

2.2 Interpretation Framework Overview
The goal of interpretation for representation instances is to build
a mapping function f : RD → RM , where the input representa-
tion vector z is mapped to characteristic attributes y′ ∈ RM . The
resultant y′ contains the descriptive properties of the given input z.
Here we use y′, instead of y, to emphasize that they have different
meanings although they are in the same space.

In this work, we build the interpretation mapping function f
by resorting to multimodal analytics. For each object in a dataset,
such as a customer in recommender systems or a node in network
embedding, it is involved with two information modalities: the
position information contained in its embedding vector z, and the
characteristic information expressed by the attribute vector y. Some
elements in y are relevant with z, while others are just noises. Thus,
after establishing the correlation between the two modalities, with
Z and Y as training samples, the interpretation y′ can be obtained
through multimodal inference given the input query z.

The overall interpretation approach is shown in Figure 1. The
interpretation function f is the composite of two modules, i.e.,
f (z) = (д ◦ h)(z) = д(h(z)). Hereh : RD → RCp is a spatial encoder
which transforms representation vector z into a vector p ∈ RCp

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

61

called spatial codes, while д : RCp → RM reconstructs attributes y′
from spatial codes. The role of spatial codes is to intuitively indicate
the location of a representation vector in the latent space. After that,
we design д as part of a multimodal autoencoder which handles the
correlation between position information and attribute information.
The details of each module are introduced in the sections below.

3 SPATIAL ENCODING FOR
REPRESENTATION INSTANCES

In this section, we introduce details of building the spatial encoder.
The role of the spatial encoder is to assign representation instances
with spatial codes specifying which clusters the instances belong
to. In this way, we can intuitively express the relative location of
instances in the latent space.

3.1 Affinity Graph based on Representations
The relations between representation vectors are preserved through
their mutual similarities in the latent space. For mining such rela-
tions, given the representation vectors Z, we first build an affinity
graph G to efficiently store their similarities in the latent space. Let
A denote the affinity matrix of the graph, the link weight between
a pair of nodes is defined as:

Ai, j =

{
ei, j , if j ∈ nbrs(i) or i ∈ nbrs(j)
0, otherwise

, (1)

and

ei, j = 1 −
Z(i, :)Z(j, :)T

∥Z(i, :)∥∥Z(j, :)∥
, (2)

where nbrs(i) denotes the set of nearest neighbors of node i . The
number of neighbors can be set as |nbrs(·)| = b ⌈log2 N ⌉ according
to [39] and b is a constant integer. |nbrs(i)| is much smaller than the
number of nodes inG. In this way, we onlymaintain a sparse affinity
matrix instead of computing the weights of all node pairs which
could be expensive for both computation and storage [25, 34]. The
distances between representation vectors, i.e., the relations between
the corresponding real-world instances, are recovered through the
link information in G.

3.2 Encoding Representation Vectors Under
Multiple Resolutions

After obtaining the affinity graph G constructed from representa-
tion vectors, we will assign each graph node into some clusters to
denote its relative position in the graph and, hence, in the repre-
sentation space. The clustering is implemented on G, rather than
directly on Z, because it can capture the nonlinear manifolds in
data [46]. We choose symmetric nonnegative matrix factorization
(SNMF) as the basic model to find clusters contained in G [40]:

min
W≥0

∥A −WWT ∥2F + γ ∥W∥
2
F , (3)

where W ∈ RN×C , C is the hyperparameter deciding how many
clusters to define, and γ controls the effect of the normalization
term. The matrix factorization problem above can also be seen as
the Kernel K-means clustering of Z with the orthogonality ofW re-
laxed [6], where the kernel matrix is computed based on Equation 1
and Equation 2. Each entryW(n, c) indicates the strength that node

n is associated with cluster c . The relative position of node n in the
representation space is thus encoded in Ŵ(n, :), where Ŵ denotes
the normalized factor matrix so that

∑C
c=1 Ŵ(n, c) = 1.

There are several limitations of simply usingW to encode the
position of nodes. First, it is difficult to have a good choice for the
value ofC . Although we may resort to validation techniques [36] to
estimate the number of clusters contained inG, it is inefficient when
the data size is large. Second, it is not flexible enough to only use
flat clustering to encode the position of an instance. The resultant
clusters are independent of each other. For a large cluster, it is
difficult to further discriminate between the attributes of different
nodes inside it. For a small cluster, it is harder to accurately identify
its signaling characteristics due to noises and lack of data. Third,
implicit hierarchical structures naturally exist in many datasets [43],
such as in recommender systems and publication networks, but
such structures cannot be captured through flat clustering. We
wonder if there is a way to avoid the difficulty of determining a
single optimal C value, and have an effective and flexible coding
scheme to represent the positions of instances.

3.2.1 Hierarchical Structure Generation. To address the difficulties
above, we propose a hierarchical encoding method to represent
the position of vectors in latent spaces. The W ∈ RN×C1 obtained
from flat clustering, where C1 equals to C , indicates the affiliation
of N nodes to C1 clusters. Since W is also nonnegative, we can
further decompose it into two nonnegative matrices W′2 ∈ R

N×C2

andW1 ∈ RC2×C1 to get a 2-layer hierarchical cluster structure, i.e.,
W ≈W′2W1. Here C2 is the number of clusters in the 2-nd layer,
W′2 indicates the affiliation of N nodes to 2-nd layer clusters, and
W1 indicates the affiliation relation between C1 clusters in the 1-st
layer and C2 clusters in the 2-nd layer. Similarly, sinceW′2 is also
nonnegative, it can be further decomposed into W′3 ∈ R

N×C3 and
W2 ∈ RC3×C2 to get the 3-layer hierarchical cluster structure. This
process can be generalized to a L-layer hierarchical structure:

W ≈WLWL−1...W2W1, (4)

where WL is a N ×CL matrix, and Wl is a Cl+1 ×Cl matrix. Here
WL is not written asW′L , because it will no longer be factorized. We
letCl < Cp for l < p, which means higher layers are of finer granu-
larity. The overall loss function to solve the hierarchical clustering
problem discussed above is formulated as:

min
W1, ...,WL

∥A −WL ...W1WT
1 ...W

T
L ∥

2
F + 2γ (

L∑
l=1
∥Wl ∥

2
F)

s.t. Wl ≥ 0, l ∈ {1, 2, ...,L}.

(5)

In this case, larger Cl ’s in shallow layers generates clusters with
finer granularity, while smaller Cl ’s in deeper layers regulate the
relation among small clusters. We are thus able to specify positions
in the latent space with enough flexibility through the hierarchical
structure. In our experiments, we choose the value of CL to be
larger than the estimated number of clusters in Z, while we set C1
to be much smaller. An illustration of the hierarchical structure is
in Figure 2, where there are three cluster layers and a bottom layer.

3.2.2 Spatial Encoding for Existing Instances. After obtaining the
hierarchical cluster structure, we are able to represent the spatial
position of an instance in the latent space in an effective way. An

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

62

3-rd Layer

2-nd Layer

1-st Layer

c

𝒑(𝒄)

z1
Bottom Layer

𝒑1

: Direction of Cluster Hierarchy Construction

: Direction of Shallow Encoding

𝒑𝒏,𝟏 𝒑𝒏,𝟐 𝒑𝒏,𝟑

Figure 2: An example of spatial codes for representation in-
stances. There are three layers in the spatial encoder.

instance n has different cluster assignments on different layers of
varying granularity. Suppose we let a row vector pn,l ∈ RCl denote
the cluster assignment of instance n in the l-th layer, then its overall
spatial code pn is defined as the concatenation of its cluster assign-
ments on different layers, i.e., pn = [p̂n,1, p̂n,2, ..., p̂n,L−1, p̂n,L],
as shown in Figure 2. Here p̂ denotes the probability vector after
normalizing p so that the entries sum to 1. Specifically, pn,l can be
computed as:

pn,l = enWLWL−1...Wl , (6)

where en ∈ RN is a one-hot row vector in which en (i) = 1 for i = n
and en (i) = 0 for i , n, 1 ≤ i ≤ N .

3.2.3 Spatial Encoding for New Instances. Given a new represen-
tation vector zν beyond the existing dataset, we first estimate
its linkage aν ∈ RN to the existing N nodes in G according to
Equation 1 and Equation 2. Then, the spatial code of ν is pν =
[p̂ν,1, p̂ν,2, ..., p̂ν,L−1, p̂ν,L], where

pν,l = aνWLWL−1...Wl . (7)

In this way, we can investigate a wider range of continuous regions
in the latent space, out of the exact locations of representation
vectors in Z. If the number of new instances is large and the dis-
tribution of representation instances could be affected, we may
consider dynamically updating the instances, but this is beyond the
discussion of this work.

3.3 Optimization for Hierarchical SNMF
It is challenging to directly solve the hierarchical SNMF, due to
(1) the correlation among factor matrices, and (2) the symmetric
duplicate of each factor matrix in the loss function. The common
way to address the first challenge is to apply iterative optimization
algorithms and update factor matrices alternatively [7], i.e., updat-
ing one factor matrix at each iteration with other matrices fixed.

Algorithm 1: Spatial Encoding for Representation Vectors
Input: Z, L, {C1, ..., CL }, β0, rβ
Output: Spatial code pn for each instance n

1 Build the affinity matrix A based on Equation 1 and Equation 2.
2 Randomly initialize {W1, W2, ..., WL }, where WL ∈ R

N×CL and
Wl ∈ R

Cl+1×Cl .
3 for l = L : −1 : 1 do
4 Pre-trainWl according to minWl ∥A

l −WlWT
l ∥

2
F , where

Al =WT
l+1Wl+1 for l , L and AL = A.

5 Initialize {H1, H2, ..., HL } as Hl =Wl , 1 ≤ l ≤ L.
6 β = β0.
7 while not converged do
8 for l = 1 : L do
9 UpdateWl according to Equation 10;

10 for l = 1 : L do
11 Update Hl according to Equation 11;

12 β ← β · rβ .

13 Obtain the spatial codes for existing instances or new instances,
respectively according to Equation 6 or Equation 7.

To address the second challenge, we reformulate Equation 5 as:

min
Wl ,Hl ,l ∈[1,L]

∥A −WL ...W1HT
1 ...H

T
L ∥

2
F + β(

L∑
l=1
∥Wl −Hl ∥

2
F)

+ γ (
L∑
l=1
∥Wl ∥

2
F + ∥Hl ∥

2
F),

s.t. Wl , Hl ≥ 0, l ∈ {1, 2, ...,L},
(8)

where Hl ’s are introduced to decouple factor matrices from their
duplicates, and β controls the tradeoff between NMF error and
matrix differences [20]. To guaranteeWl andHl to be close to each
other, we gradually increase the value of β as iterations progress
until convergence.

Suppose Wl is to be updated at the current iteration, then the
loss function for updating Wl can be rewritten as:

min
Wl ≥0

∥A − BlWlFl ∥
2
F + β ∥Wl −Hl ∥

2
F + γ ∥Wl ∥

2
F , (9)

where Bl = WL ...Wl+1 if l , L and Bl = I ∈ RN×N if l =
L, and Fl = Wl−1...W1HT

1 ...H
T
L if l , 1 and Fl = HT

1 ...H
T
L if

l = 1. By utilizing the Lagrangian function and auxiliary function
method [7, 22, 43], the update rule for Wl is

Wl (i, j) ←Wl (i, j)
[BTl AF

T
l + βHl](i, j)

[BTl BlWlFlFTl + βWl + γWl](i, j)
. (10)

Similarly, the update rule for Hl is as below:

Hl (i, j) ← Hl (i, j)
[F′lA

TB′l + βWl](i, j)

[F′lF
′T
l HlB′Tl B′l + βHl + γHl](i, j)

. (11)

where B′l = WL ...W1HT
1 ...H

T
l−1 if l , 1 and B′l = WL ...W1 if

l = 1, and F′l = HT
l+1...H

T
L if l , L and F′l = I if l = L.

The overall process of spatial encoding is presented in Algo-
rithm 1. First, given the representation matrix Z, we construct
the sparse affinity matrix A to store the distances between repre-
sentation vectors. Then, we pre-train the factor matricesWl , and

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

63

initialize Hl as copies ofWl . After that, we iteratively updateWl
andHl following the multiplicative updating formulas. The value of
β increases as iterations proceed, in order to forceWl andHl close
to each other. Finally, the spatial codes of representation vectors
can be computed through mapping to established clusters.

4 INTERPRETATION GENERATION MODULE
In the previous section, we have introduced the spatial codes p
to intuitively indicate where an instance or a region locates in
the representation space. In this section, we will introduce how to
generate interpretation given p through constructing a multimodal
denoising autoencoder.

4.1 Multimodal Autoencoder
The structure of the multimodal autoencoder used in this work is
shown in the right part of Figure 1. The goal of the autoencoder is
to establish the correlation between the spatial location of instances
and their attributes. Let дE denote the encoder layers, while дDy
and дDp be the decoder layers for recovering attributes and spatial
codes, respectively. The objective function for data recovery can be
expressed as:

min
дE,дDy ,дDp

1
N

N∑
n=1

1
J

J∑
j=1

(
ly (yn ,д

D
y ◦ д

E (p̃jn , ỹ
j
n))

+ lp (pn ,д
D
p ◦ д

E (p̃jn , ỹ
j
n))

)
,

(12)

whichminimizes the difference between clean data samples {yn ,pn }
and reconstructed data output from дDy ◦ д

E and дDp ◦ дE . Here we
denote yn as Y(n, :) for conciseness. p̃jn is the j-th corruption of the
spatial code of the n-th instance, and ỹjn is the j-th corruption of its
attributes. ly (·, ·) and lp (·, ·) denote the reconstruction error with
respect to attributes and spatial codes, respectively.

After training the multimodal autoencoder, given an instance
z whose characteristics we hope to explore, we first obtain its
corresponding spatial code p. Then, the interpretation for z is:

f (z) = д ◦ h(z) = д(p) = дDy ◦ д
E (p, 0), (13)

where we set the attribute modality to be absent but infer the
attributes value based on p. In this case, lp (·, ·) in the autoencoder
training stage can be seen as to project spatial codes to the low-
dimensional manifold of the training data.

4.2 Autoencoder Training Procedure
Inspired bymultimodal learning [28] and denoising autoencoders [38],
the training procedure for our multimodal autoencoder involves
two aspects. First, we use training samples that set one of the input
modality with zero values (e.g., ỹjn = 0) and keep the other input
modality as original, but still require the autoencoder to reconstruct
both modalities. Second, we further corrupt the training samples
on the input side. Specifically, we apply Gaussian noise corruption
to obtain ỹ, and apply salt-and-pepper corruption [38] to obtain
p̃. Gaussian noise is a very common noise model for real valued
inputs. For salt-and-pepper corruption, it means setting a fraction
of entries in p randomly to their minimum or maximum possible
value. Since each entry of p means the probability of belonging to

Dataset N M
20NG 11,314 1,200
Flickr 7,575 69

MovieLens 6,040 1,128

Table 1: Statistics of datasets.

a certain cluster, the minimum and maximum value are 0 and 1,
respectively. Larger entries in p are more likely to be set as 1.

When adopting the "denoising" strategy, we apply salt-and-
pepper noise on spatial codes because it naturally aligns with our
goal of interpretation. A spatial code corrupted by salt-and-pepper
noise is actually a cluster indicator. For example, suppose we have a
two-layer spatial code p = [0.8, 0.2, 0.7, 0.2, 0, 0.1], where there are
two clusters on the 1-st layer and four clusters on the 2-nd layer,
some possible corrupted codes could be p̃ = [1, 0, 1, 0, 0, 0] with
high probability or p̃ = [0, 1, 0, 0, 0, 1] with low probability. When
feeding these samples to the autoencoder, instead of establishing the
relation solely between the instance p to its attributes, we are forc-
ing the autoencoder to learn the relation between the clusters and
the attributes of samples inside them. Till now, we have introduced
the whole framework of interpreting the outcome of representation
learning, including coding the spatial positions of representation
instances, as well as building a multimodal autoencoder to generate
interpretation given spatial codes.

5 EXPERIMENTS
We evaluate the effectiveness and flexibility of the proposed inter-
pretation framework based on different real-world datasets and dif-
ferent representation learning models. Two strategies are designed
to quantitatively measure whether the generated interpretations
are faithful to representation learning models.

5.1 Experimental Settings
5.1.1 Datasets. The datasets used in experiments, as well as the
definition of attributes for each dataset, are summarized as below.
The statistics of the datasets are in Table 1, where N is the number
of instances andM denotes the dimension of attributes.

• 20NG: The 20NewsGroup dataset contains a word-document
matrix. Each document is seen as an instance. The attributes of
documents are defined as the TF-IDF vectors constructed from
the text corpus.
• Flickr [13]: A network dataset constructed based on links be-
tween online bloggers and their attributes. Bloggers are treated
as nodes. Each node is associated with two types of attributes: (1)
word attributes obtained from the posts generated by bloggers;
(2) personal interests of bloggers. The two sets of attributes are
concatenated for each node.
• MovieLens [10]: A movie rating dataset which has been widely
used in evaluating collaborative filtering recommender systems.
The dataset consists of a rating matrix and a tag information ma-
trix. Ratings are made on the 5-star scale. Each user has at least
20 ratings . The attributes of each user Y(u, :) are constructed by
utilizing his/her rating records combined with the tag informa-
tion of movies. Specifically, Y(u,m) =

∑
v r (u,v) · c(v,m), where

v denotes a movie,m denotes a tag, r (u,v) is the rating that user

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

64

Dataset #neurons in дDy layers #neurons in дDp layers
20NG 25 - 150 - 500 - M 25 - Cp
Flickr 10 - 25 - M 10 - Cp

MovieLens 35 - 150 - 400 - M 35 - Cp
Table 2: Neural network structure of decoder for each modality in
the multimodal autoencoder used on different datasets.

u gives to movie v , and c(v,m) measures how closely the tagm
is associated with movie v .

The three datasets above have been applied in different domains, i.e.,
text analysis, network embedding and recommender systems, re-
spectively. We will test our framework on these datasets to evaluate
its effectiveness and versatility.

5.1.2 The Applied Representation LearningModels. For each dataset,
we implement several representation learning models whose re-
sults are to be interpreted. For 20NG data, we use NMF [22] and
Doc2VecC [2] to learn the representation of documents. The input
fed into NMF is the TF-IDF matrix of size N × M built from the
data corpus, where N is the number of documents and M is the
vocabulary size. The input into Doc2VecC is the raw text. The latent
space dimension is 50 for NMF and 100 for Doc2VecC. For Flickr
data, we use LANE [13] and CMF [47] to learn the embedding of
network nodes. Both models utilize links and attributes together to
jointly learn the embeddings of nodes. The latent space dimension
is set as 100 for LANE and 30 for CMF. For MovieLens, we use
NMF-based collaborative filtering (NMF-CF) [19] and neural collab-
orative filtering (NeuCF) [11] to learn the representation of users.
The input fed into the recommender systems is the user-movie
rating matrix. The latent space dimension is set as 50 for NMF-CF
and 16 for NeuCF. The details of tuning each model mainly follow
the paper references and are omitted here due to page limit. After
obtaining the representation vectors, we will feed them together
with attributes into our interpretation method.

5.1.3 Details of Framework Implementation. We use two layers for
all spatial encoders in experiments. The dimension of each layer
is set as follows: C1 = 10 and C2 = 25 for interpreting NMF and
Doc2VecC on 20NG data, C1 = 9 and C2 = 15 targeting LANE
and CMF on Flickr data, C1 = 18 and C2 = 35 for interpreting
NMF-CF and NeuCF on MovieLens data. We use variational autoen-
coders [17] as the basis for building the multimodal autoencoders.
Fully connected networks are chosen as the architecture for both
encoders and decoders. The structure of multimodal autoencoders
is shown in Table 2, where Cp = C1 +C2 for the input layer of дDp .
In this table, we only show the number of neurons in the layers of
decoders дDp and дDy respectively, while the structure of encoder is
symmetric to that of its corresponding decoder for each modality.

To have some intuitive sense of the effect of spatial encoding,
we provide some example in Figure 3, using t-SNE [25] for 2D
space visualization. The two scatter plots show the clustering result
on the representation vectors obtained from Doc2VecC on 20NG
data. Each color corresponds to a cluster. Each vector is assigned to
the cluster corresponding to the largest entry in the spatial codes.
There are two layers in the spatial codes, where C1 = 10 for the
left plot and C2 = 25 for the right plot. We could observe from
the figure that cluster assignments are in general consistent with

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

Figure 3: Visualization of spatial codes, with two hierarchies, on
the representations of documents in 20NG dataset. Left: 10 clusters;
Right: 25 clusters.

the distribution of representation vectors. The two sets of clusters
mutually complement each other. Fine-grained spatial codes can
discover more details of cluster structures, while coarse-grained
spatial codes alleviate excessive cluster partitioning.

5.1.4 Baseline Methods. We will compare the proposed method
with several other model-agnostic interpretation methods and some
of its variants as baseline methods, regarding the interpretation
faithfulness. The baseline methods are listed as below.
• LIME [30]: An interpretation model originally designed for ex-
plaining individual predictions of a given classification model. In
our experiments, given a representation vector to be interpreted,
we use LIME with LASSO to select important attributes as its in-
terpretation, through comparing the neighborhoods of the target
vector with some other distant clusters.
• MTGL [16]: A multitask classification model with regularization
of tree-based group lasso. An affinity graph is also built for hi-
erarchical clustering, where graph nodes are deterministically
assigned to clusters organized in a hierarchy structure [23]. The
resultant clusters are regarded as different classes in linear clas-
sification. The value of linear coefficients in the model is used as
interpretation for different clusters. The interpretation of each
node follows the interpretation of the cluster it belongs to.
• FlatCoarse: A variant of the proposed method, where flat clus-
tering replaces the hierarchical solution. Specifically, the number
of clusters is set as C1, so the representation space is partitioned
with coarse granularity.
• FlatFine: Another flat-clustering variant of the proposed model,
where the number of clusters is set as CL , so the representation
space is partitioned with fine granularity.

5.2 Interpretation Evaluation Through
Adversarial Perturbation

The goal of this experiment is to evaluate whether the interpretation
generated by our framework can correctly identify the attributes
that preserve the similarities contained in representation vectors.
The core idea of evaluating interpretation correctness is to check
the effectiveness of the adversarial perturbation initiated based on
the interpretation. The motivation behind this evaluation method
is that knowing how a model operates provides us the direction to
“hack" it [5][18][24].

5.2.1 Interpretation Evaluation for Document Representation Learn-
ing. We first evaluate the interpretation accuracy for text represen-
tation learning. For continuous attributes such as TF-IDF values

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

65

0 2 · 10−2 4 · 10−2 6 · 10−2
0.56

0.58

0.6

0.62

0.64

Perturbation magnitude

Sh
ift

NMF on 20NG

Prop MTGL LIME
Prop_FINE Prop_COAS RAND

0 10 20 30 40
0.1

0.15

0.2

0.25

Number of deleted top words
Sh

ift

Doc2VecC on 20NG

Prop MTGL LIME
Prop_FINE Prop_COAS RAND

Figure 4: Evaluation of interpretation for document representation
instances on 20NewsGroup data.

0 0.2 0.4 0.6 0.8
0.14

0.16

0.18

0.2

0.22

Perturbation magnitude

Sh
ift

LANE on Flickr

Prop MTGL LIME
Prop_FINE Prop_COAS RAND

0 0.2 0.4 0.6 0.8
0.5

0.55

0.6

0.65

0.7

Perturbation magnitude

Sh
ift

LCMF on Fllickr

Prop MTGL LIME
Prop_FINE Prop_COAS RAND

Figure 5: Evaluation of interpretation for network embedding in-
stances on Flickr data.

used in NMF, the adversarial sample for instance n is generated
through perturbing the attributes:

X∗(n, :) = X(n, :) − ϵdn/∥dn ∥1, (14)

where ϵ is the perturbation magnitude, dn ∈ RM and

dn (m) =

{
thre − rank(y′n (m)) + 1, if rank(y′n (m)) ≤ thre

0, otherwise
.

(15)
To understand the equations above, thre is the number of attributes
to be perturbed, y′n denotes the interpretation for object n, rank(·)
represents the rank of the entry after sorting all vector entries in
descending order. We set thre = 10 in experiments. Therefore, an
attribute assigned with higher importance score by interpretation is
subject to greater perturbation. However, for representation learn-
ing models such as Doc2VecC that accept raw texts (i.e., discrete
attributes) as input, the way of generating adversarial samples is
slightly different. We delete from texts the top words that are as-
signed with high importance scores by interpretation methods. The
number of words to be deleted is thre . The resultant text document,
after top words being deleted, is treated as the adversarial sample.

After adversarial perturbation, we append the adversarial sam-
ples to the original dataset, obtain the new representation vectors,
and measure the relative shift of new vectors compared with their
original vectors before perturbation. The shift of a representation
vector is defined as below:

shi f t(z, ϵ) =
|Neighbors(z) ∩ Neighbors(z∗)|

|Neighbors(z)|
, (16)

where Neighbors(z) is the set of neighbors near vector z in the latent
space. z∗ denotes the new vector from representation learning after
adversarial perturbation.We set the number of neighbors as 0.03×N
in our experiments. It is expected that more accurate interpretation,
when applied in adversarial attacks, will lead to greater shift of
representation vectors.

The effectiveness of different interpretation methods in generat-
ing adversarial samples is shown in Figure 4. Some observations
are given as below:

• The shift of representation instances is greater as we increase the
perturbation degree, especially compared with random perturba-
tion. This means adversarial perturbation, to some extent, can be
used for evaluating whether interpretation unveils the patterns
learned by representation learning. Here we include the random
method to exclude the possibility that the shifts are caused by
other unknown factors.
• The global interpretationmethods, including the proposedmethod
and MTGL, initiate more effective adversarial attacks than the
local method LIME. It thus shows the advantage of understanding
the representation results from a broader point of view. Mean-
while, the proposed method performs better than MTGL.
• The proposed method achieves better performance than its two
variants. It means that no matter we cluster representation in-
stances with coarse or fine granularity, combining them together
can promote the interpretation accuracy. It justifies our choice
of including multiple hierarchies in the spatial encoder.

5.2.2 Interpretation Evaluation for Attributed Network Embedding.
We now evaluate the accuracy of interpretation for network em-
bedding. Since the attribute values in this dataset are continuous,
we adopt the same adversarial perturbation scheme as on TF-IDF
attributes in the last experiment. The evaluation results are shown
in Figure 5. Similar observation can be drawn as the last experiment,
so we do not repeat them here. Furthermore, by comparing the plots
in Figure 4 and Figure 5, we can find that in NMF-related models
(i.e., LCMF on Flickr data and NMF on 20NG data), the performance
of LIME is better than that in other scenarios. A possible reason is
that NMF models, especially with L1 regularization, distinguish dif-
ferent latent space regions by assigning large z(d) values of certain
dimensions d to the representation instances within each region.
Therefore, each group is more linearly separable to other groups.

5.3 Interpretation Evaluation Through
Content-Based Recommendation

In this subsection, we evaluate the accuracy of interpreting latent
representation of movie viewers obtained from collaborative fil-
tering (CF). The evaluation strategy is different from the one used
in the last subsection. The reason is that the attribute matrix Y
is disjoint from the input information to CF, so we cannot apply
adversarial attacks on Y to change the representation vectors.

In this experiment, we apply the idea of content-based recom-
mendation to evaluate the interpretation for collaborative filtering.
Specifically, after obtaining interpretation y′n for the representation
vector Z(n, :) of a user n, we use y′n to recommend the movies that
the user may be interested in. In another word, we use interpreta-
tion result as the input for content-based recommendation, since

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

66

50 100
0

0.1

0.2

0.3

k

N
D
CG

@
k

NMF-CF on Movielens

Prop MTGL LIME
Prop_FINE Prop_COAS RAND

50 100
0

0.1

0.2

0.3

k
N
D
CG

@
k

NeuCF on Movielens

Prop MTGL LIME
Prop_FINE Prop_COAS RAND

Figure 6: Interpretation performance evaluation through content-
based recommendation.

−80 −60 −40 −20 0 20 40 60 80

−75

−50

−25

0

25

50

75

−80 −60 −40 −20 0 20 40 60 80

−75

−50

−25

0

25

50

75

Figure 7: Visualization of attribute intensity over representation
space. Left: The intensity of attribute "comedy"; Right: The inten-
sity of attribute "tragedy". Red color means higher intensity, while
blue color means lower intensity.

y′n essentially acts as the profile of user n. The recommendation
performance is measured as the similarity between the original
CF result as ground-truth and the content-based recommendation
result. We use nDCG@k as the metric. It is worth noting that the
original testing ratings, if we have, for evaluating CF cannot be used
to evaluate interpretation, because our goal is to measure whether
interpretation is faithful with respect to the target CF model but
not the testing ratings.

The motivation of using content-based recommendation as eval-
uation strategy is shown in Figure 7. The 2D space visualization,
for representation vectors of movie viewers, is generated using
t-SNE [25]. The color indicates the intensity of certain attribute (i.e.,
movie tag), where "red" means that the tag is intensively associated
with the movies watched by the viewer, while "blue" means the
opposite. From the figure, we observe that tag intensity is highly
correlated with the distribution of representation vectors. This mo-
tivates us to use tag information as description to the interests
of movie viewers located in different regions of the latent space.
Besides, the highlighted area of tag "comedy" is disjoint from that of
tag "tragedy", which makes sense as they are opposed in meaning.

We did experiments on two CF models, where one is based on
NMF and the other is NeuCF built upon neural networks. The
performance is shown in Figure 6. We can observe that the pro-
posed framework is better than the baseline methods. LIME is not
as advantageous as global interpretation methods, although the
gap is smaller when interpreting NMF. The global interpretation
methods have significantly better performance than the random
method, which indicates that they could preserve the prediction
mechanism of the original recommendation systems. The proposed
framework, as well as its variants, have stable performances in
different scenarios.

6 RELATEDWORK
Representation learning maps data instances into an expressive and
usually low-dimensional latent space, where similar instances are
mapped close to each other [1]. Representation learning is funda-
mental to the success of downstream machine learning models, es-
pecially when dealing with data of raw formats such as images [41],
texts [2, 26] and networks [29, 35]. Some models such as autoen-
coders [37] or embedding models [26, 29] explicitly aim at learning
the representation of input data, while many applications such as
multimodal learning [14], recommender systems [19] and anom-
aly detection [3] rely on effective representations for improving
performance although they may not pursue learning representa-
tions as the direct goal. The diversity of the application scenarios
and model structures put forward request on the flexibility of the
corresponding interpretation framework.

Despite the importance of representation learning, similar to
many complex prediction models, its interpretability has not re-
ceived much attention in applications. Some preliminary methods
have been developed to interpret machine learning models [8, 27].
Existing interpretation methods can be roughly divided into several
categories. First, a major category of methods provide local interpre-
tation for supervised models. Some methods build local explanable
models to approach the behavior of the original model [30, 45],
while some methods utilize interpretable components such as at-
tention layers [32]. Some approaches use gradient-based measures
to unveil the behavior of models as input changes [31]. Also, some
model components can also be utilized to obtain faithful and rea-
sonable interpretation, such as the middle layers in CNN [9], and
piece-wise linear activation functions [5]. Second, some methods
provide global interpretation and extract knowledge from super-
vised models. Global interpretation can be extracted in the form of
rule-based decision trees [21]. In image classification, the knowl-
edge could be expressed as a network connecting different visual
concepts arranged according to their topological relations [44].
Third, some recent approaches try to extract global interpretation
for unsupervised models. Some attempts include extracting a tax-
onomy to understand how overall network embedding instances
distribute in the latent space [23], where cluster-level interpretation
of instances is achieved. In addition, Sharma et al. initiate a study
to analyze the geometric arrangement of embeddings in knowl-
edge graphs [33]. Finally, some effort has been paid to improve
the interface between ML systems and users, such as vector-space
visualization algorithms like tSNE [25], and exploration about the
explanation components that are most compelling to users in rec-
ommender systems [12].

7 CONCLUSION AND FUTUREWORK
In this paper, we design a new approach to interpret the outcome of
representation learning. The problem involves two aspects. The first
aspect is understanding how representation instances distribute in
the latent space. The second aspect is to extract the semantic mean-
ing of different regions in the distribution. To tackle the first issue,
given a representation instance, a hierarchical spatial encoder is de-
signed to express where it locates in the latent space. Following that,
a multimodal autoencoder is built to learn the correlation between
spatial codes and attributes. The recovered attributes, inferred from

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

67

the autoencoder given the spatial code of an representation in-
stance, describe the noteworthy characteristics of the instance in
the latent space.

The problem of representation interpretation has not been well-
studied. Some possible future work is as follows. First, more com-
plicated scenarios can be considered, where there exist multiple
relations between instances such as in knowledge graphs. Sec-
ond, we can explore how to combine representation interpretation
with existing supervised machine learning interpretation methods.
Third, techniques can be developed to feed interpretation back to
the learning process to improve the model.

ACKNOWLEDGMENTS
The work is, in part, supported by DARPA (#N66001-17-2-4031)
and NSF (#IIS-1657196, #IIS-1718840). The views and conclusions
contained in this paper are those of the authors and should not be
interpreted as representing any funding agencies.

REFERENCES
[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence (2013).

[2] Minmin Chen. 2017. Efficient vector representation for documents through
corruption. arXiv preprint arXiv:1707.02377 (2017).

[3] Ting Chen, Lu-An Tang, Yizhou Sun, Zhengzhang Chen, and Kai Zhang. 2016.
Entity embedding-based anomaly detection for heterogeneous categorical events.
arXiv preprint arXiv:1608.07502 (2016).

[4] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy
Schuetz, and Walter Stewart. 2016. Retain: An interpretable predictive model for
healthcare using reverse time attention mechanism. In NIPS.

[5] Lingyang Chu, Xia Hu, Juhua Hu, Lanjun Wang, and Jian Pei. 2018. Exact and
Consistent Interpretation for Piecewise Linear Neural Networks: A Closed Form
Solution. arXiv preprint arXiv:1802.06259 (2018).

[6] Chris Ding, Xiaofeng He, and Horst D Simon. 2005. On the equivalence of
nonnegative matrix factorization and spectral clustering. In SDM. SIAM.

[7] Chris Ding, Tao Li, Wei Peng, and Haesun Park. 2006. Orthogonal nonnegative
matrix t-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining.

[8] Mengnan Du, Ninghao Liu, and Xia Hu. 2018. Techniques for Interpretable
Machine Learning. arXiv preprint arXiv:1808.00033 (2018).

[9] Mengnan Du, Ninghao Liu, Qingquan Song, and Xia Hu. 2018. Towards Explana-
tion of DNN-based Prediction with Guided Feature Inversion. In KDD.

[10] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems (TiiS) (2016).

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. InWWW. 173–182.

[12] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. 2000. Explaining col-
laborative filtering recommendations. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work.

[13] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. InWSDM. ACM.

[14] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for
generating image descriptions. In CVPR.

[15] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not
enough, learn to criticize! criticism for interpretability. In NIPS.

[16] Seyoung Kim and Eric P Xing. 2010. Tree-guided group lasso for multi-task
regression with structured sparsity. In ICML.

[17] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[18] Pang Wei Koh and Percy Liang. 2017. Understanding Black-box Predictions via
Influence Functions. In International Conference on Machine Learning.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009).

[20] Da Kuang, Sangwoon Yun, and Haesun Park. 2015. SymNMF: nonnegative low-
rank approximation of a similarity matrix for graph clustering. Journal of Global
Optimization (2015).

[21] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable
decision sets: A joint framework for description and prediction. In KDD.

[22] Daniel D Lee and H Sebastian Seung. 2001. Algorithms for non-negative matrix
factorization. In Advances in neural information processing systems. 556–562.

[23] Ninghao Liu, Xiao Huang, Jundong Li, and Xia Hu. 2018. On Interpretation of
Network Embedding via Taxonomy Induction. In KDD.

[24] Ninghao Liu, Hongxia Yang, and Xia Hu. 2018. Adversarial Detection with Model
Interpretation. In KDD.

[25] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research (2008).

[26] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[27] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. 2017. Meth-
ods for Interpreting and Understanding Deep Neural Networks. arXiv preprint
arXiv:1706.07979 (2017).

[28] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-
drew Y Ng. 2011. Multimodal deep learning. In ICML.

[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. ACM.

[30] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I
Trust You?: Explaining the Predictions of Any Classifier. In KDD.

[31] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization.. In ICCV.

[32] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable convo-
lutional neural networks with dual local and global attention for review rating
prediction. In Proceedings of the Eleventh ACM Conference on Recommender Sys-
tems.

[33] Aditya Sharma, Partha Talukdar, et al. 2018. Towards Understanding the Geome-
try of Knowledge Graph Embeddings. In ACL.

[34] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. 2016. Visualizing large-
scale and high-dimensional data. InWWW.

[35] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. InWWW.

[36] Robert Tibshirani and Guenther Walther. 2005. Cluster validation by prediction
strength. Journal of Computational and Graphical Statistics (2005).

[37] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
2008. Extracting and composing robust features with denoising autoencoders. In
ICML.

[38] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion. Journal of Machine
Learning Research (2010).

[39] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing (2007).

[40] Fei Wang, Tao Li, Xin Wang, Shenghuo Zhu, and Chris Ding. 2011. Community
discovery using nonnegative matrix factorization. Data Mining and Knowledge
Discovery (2011).

[41] Faqiang Wang, Wangmeng Zuo, Liang Lin, David Zhang, and Lei Zhang. 2016.
Joint learning of single-image and cross-image representations for person re-
identification. In CVPR.

[42] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In KDD.

[43] Suhang Wang, Jiliang Tang, Yilin Wang, and Huan Liu. 2015. Exploring Implicit
Hierarchical Structures for Recommender Systems.. In IJCAI.

[44] Quanshi Zhang, Ruiming Cao, Feng Shi, Ying Nian Wu, and Song-Chun Zhu.
2017. Interpreting cnn knowledge via an explanatory graph. arXiv preprint
arXiv:1708.01785 (2017).

[45] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. 2018. Interpretable convo-
lutional neural networks. In CVPR.

[46] Zhenyue Zhang and Hongyuan Zha. 2004. Principal manifolds and nonlinear
dimensionality reduction via tangent space alignment. SIAM journal on scientific
computing (2004).

[47] Vincent W Zheng, Yu Zheng, Xing Xie, and Qiang Yang. 2010. Collaborative
location and activity recommendations with GPS history data. InWWW.

Session 2: Knowledge Graphs and Analytics WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

68

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Notations
	2.2 Interpretation Framework Overview

	3 Spatial Encoding for Representation Instances
	3.1 Affinity Graph based on Representations
	3.2 Encoding Representation Vectors Under Multiple Resolutions
	3.3 Optimization for Hierarchical SNMF

	4 Interpretation Generation Module
	4.1 Multimodal Autoencoder
	4.2 Autoencoder Training Procedure

	5 Experiments
	5.1 Experimental Settings
	5.2 Interpretation Evaluation Through Adversarial Perturbation
	5.3 Interpretation Evaluation Through Content-Based Recommendation

	6 Related Work
	7 Conclusion and Future Work
	References

