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Abstract—Despite the wide application in recent years, most
recommender systems are not capable of providing interpreta-
tions together with recommendation results, which impedes both
deployers and customers from understanding or trusting the
results. Recent advances in recommendation models, such as deep
learning models, usually involve extracting latent representations
of users and items. However, the representation space is not
directly comprehensible since each dimension usually does not
have any specific meaning. In addition, recommender systems in-
corporate various sources of information, such as user behaviors,
item information, and other side content information. Properly
organizing different types of information, as well as effectively
selecting important information for interpretation, is challenging
and has not been fully tackled by conventional interpretation
methods. In this paper, we propose a post-hoc method called
Sorted Explanation Paths (SEP) to interpret recommendation
results. Specifically, we first build a unified heterogeneous in-
formation network to incorporate multiple types of objects
and relations based on representations from the recommender
system and information from the dataset. Then, we search for
explanation paths between given recommendation pairs, and use
the set of simple paths to construct semantic explanations. Next,
three heuristic metrics, i.e., credibility, readability and diversity,
are designed to measure the validity of each explanation path, and
to sort all the paths comprehensively. The top-ranked explanation
paths are selected as the final interpretation. After that, practical
issues on computation and efficiency of the proposed SEP method
are also handled by corresponding approaches. Finally, we con-
duct experiments on three real-world benchmark datasets, and
demonstrate the applicability and effectiveness of the proposed
SEP method.

Index Terms—Recommender systems; Post-hoc interpreta-
tions; Heterogeneous information network

I. INTRODUCTION

The past decade has witnessed the increasing deployment
of recommender systems in various fields such as e-commerce
websites [1], social networks [2] and review aggregation
platforms [3]. In general, recommender systems aim to provide
customers with the items that they are more likely to be in-
terested in. Despite the great development of recommendation
models in terms of the improving accuracy [4] and broader ap-
plication scenarios [5], many recommender systems still face
one challenging problem, i.e., their recommendation results
are not interpretable. On one hand, the lack of interpretability
makes it difficult for deployers to comprehensively understand
the effectiveness and defects of their systems [6]. On the
other hand, customers are not sufficiently motivated as they
may not realize their essential demand or interests. This issue
becomes prominent especially for those recommender systems
that utilize latent factors as internal representations in decision

making process [7]. The information of user preferences and
item characteristics behind user-item ratings can be effectively
encoded into the latent representations. However, the latent
representations usually are largely indecipherable, thus making
the recommendations generated from them become opaque.

Some preliminary work has been proposed to provide inter-
pretation for recommendation models. In general, the interpre-
tation schemes for recommendation can be divided into three
categories: (1) discovering similar users as representatives for
the target customer, according to their rating behaviors [8]
or social connection [9]; (2) associating the target customer
with relevant items to indicate the user interests [10]; (3)
resorting to descriptive attribute information to understand the
preferences of users and the characteristics of items, where the
format of the interpretations could be both textual [11] and
visual [12]. Existing methods simply design the interpretation
scheme as a homogeneous set of objects (e.g., users, items
or attributes) extracted from recommender systems or corre-
sponding datasets. In general, among the three categories, it is
hard to tell which one is superior compared with the other two.
Thus, utilizing all three complementary interpretation schemes
and generating interpretation adaptively would be beneficial
in enhancing the quality and robustness of recommendation
explanation.

Besides existing efforts, there are still several challenges
to be solved towards designing a flexible and comprehensive
interpretation method for recommender systems. First, many
existing recommendation models map users and items into
latent representation space, which is not directly comprehen-
sible. Our goal is to design a model-agnostic interpretation
method which does not specify how the latent space is
constructed. Second, a structured interpretation scheme, which
is capable of incorporating multiple types of objects, would be
more desirable than the methods with homogeneous explana-
tions. However, it is a nontrivial task to effectively organize
different type of objects into a joint structure. Third, effective
metrics and efficient sorting for explanations are challenging
to be designed. The relevant evaluation and filtering need to
be conducted according to some commonly accepted claims
towards human understandability.

To tackle the aforementioned challenges, we develop a
sorted explanation path (SEP) based method to achieve the
post-hoc interpretability of recommender systems with la-
tent representations. The proposed SEP method first builds
a normalized weighted heterogeneous information network
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(NW-HIN) to incorporate all available information together.
Then, to obtain the interpretations for a specific user-item
recommendation pair, SEP conducts the path searching by
a revised depth-first algorithm, aiming to find all potential
simple paths between the targeting user and the recommended
item. With the mined explanation path set, the proposed
SEP method sorts all the candidates by the unsupervised
ranking method based on three designed heuristic metrics
(i.e. credibility, readability and diversity). Further, the top-
K interpretations are extracted according to relevant ranking
scores. Besides, some practical issues of SEP are also handled
for robustness and efficiency. The main contributions of this
paper are summarized as follows:

• We design a post-hoc interpretation method called SEP,
targeting general recommender systems with latent repre-
sentations of users and items;

• We propose three heuristic metrics for interpretation evalu-
ation (i.e. credibility, readability, diversity), and further use
these metrics to filter potential candidates;

• We provide an efficient and effective approach to sort
explanations comprehensively without human subjectivity;

• We test the proposed SEP method on three real-world
datasets to evaluate its applicability and effectiveness.

II. PRELIMINARIES

We first introduce the notations used in this paper. We use
lowercase alphabets to denote variables (e.g. x), uppercase
alphabets to denote scalars (e.g. X), boldface lowercase alpha-
bets to denote vectors (e.g. x), boldface uppercase alphabets to
denote matrix (e.g. X), and calligraphic uppercase alphabets
to denote sets or entities (e.g. X ). Besides, for a matrix X,
its transpose is denoted as Xᵀ and its i-th row (or column)
vector is represented as xi.

A. Latent Factor Model
Latent factor model is a very popular model-based recom-

mendation approach in recent years, due to its high capability
in capturing the correlation between users and items [13].
For example, matrix factorization is one of the common
approaches belonging to this category [14]. Let RM×N be the
rating matrix, where M is the number of users and N is the
number of items. rui is the (u, i)-th element of R, indicating
the rating score of user u to item i. Matrix factorization
decomposes R into two low-rank matrices P and Q with the
following objective function:

min
P,Q

M∑
u=1

N∑
i=1

(rui − puq
ᵀ
i )

2eui + λ1‖P‖2F + λ2‖Q‖2F, (1)

where P ∈ R
M×D is the user latent matrix with its u-th

row pu being the latent features of user u, and Q ∈ R
N×D

is the item latent matrix with its i-th row qi being the
latent features of item i. D � min(M,N) is the latent
dimension. eui represents the rating indicator that equals to
1 if user u rated item i and equals to 0 otherwise. λ1, λ2 are
regularization coefficients. After training, user u’s rating on
item i is predicted as r̂ui ≈ puq

ᵀ
i . The proposed interpretation

method uses latent matrices P,Q as part of the input.

B. Normalized Weighted Heterogeneous Information Network

Heterogeneous information network (HIN) is a network
with multiple types of objects (nodes) and diversified relations
(links). HIN enables representation of complicated real world
systems, and empowers us to mine various knowledge from it.
In our work, the links of HIN are associated with normalized
weights (NW), so the HIN here is extended to NW-HIN, which
is the information carrier for interpretation generation in our
proposed method. The detailed definition of NW-HIN is given
as below [15]:

Definition 1 (Normalized Weighted HIN): NW-HIN is
defined as a graph G = (V, E ,W) with a node type mapping
τ : V → A and a link type mapping φ : E → B, subject to
|A| > 1 and |B| > 1. Each v ∈ V has a particular object
type τ(v) ∈ A, and each e ∈ E has a particular relation type
φ(e) ∈ B. Each relation has a normalized link weight w ∈ W ,
which falls into the interval [−1, 1], indicating the connection
strength between the corresponding two objects.

C. Problem Statement

We denote the given recommender system as R and the
corresponding dataset as D. The latent representations of users
and items learned from D are denoted as P and Q respectively.
The rating matrix is denoted as R, and the content information
is represented as the set C. For a given recommendation pair
between targeting user u and recommended item i, we aim
to generate relevant interpretations for this recommendation
result, with the aid of P, Q, R and C. Specifically, in this
paper, the interpretation is referred to a path set K in NW-
HIN, where u and i are the end nodes for all relevant paths.
In particular, a path k ∈ K in NW-HIN is defined as below.

Definition 2 (Path): A path k is a data structure defined
on NW-HIN G = (V, E ,W), and is typically in the format

of v1
e1←→ v2

e2←→ · · · el−1←→ vl to indicate the composite
relationship between node v1 = u and vl = i.

III. METHODOLOGY

In this section, we will formally introduce the proposed
SEP method. The overall pipeline of SEP is illustrated in
Fig. 1. Specifically, our proposed method involves four steps:
(1) NW-HIN construction; (2) Explanation path mining; (3)
Explanation path quantification; and (4) Unsupervised path
sorting. The details of each step are introduced as below.

A. NW-HIN Construction

The purpose of constructing NW-HIN is to organize various
types of information in a structured format. The flexibility of
NW-HIN facilitates the subsequent procedures of explanation
extraction. An example of the constructed NW-HIN is given
in the upper part of Fig. 2. For generality, to construct NW-
HIN, we consider three types of objects (i.e., HIN nodes),
and four types of relations (i.e., HIN links). The set of object
types is A = {Nu,Ni,Na}, where Nu, Ni, Na respectively
denote the user, item, aspect. The set of relation types is B =
{Luu,Lii,Lui,Lia}, where Luu denotes user-user similarity,
Lii denotes item-item similarity, Lui means user-item strength,
and Lia represents item-aspect relevance. The elements in Na
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Fig. 1: Overall framework of the proposed SEP scheme.

depend on the specific applications. For example, in movie
recommendations, Na could include directors, genre, actors
or some other properties that are related to items. Here, we
do not consider Lua, i.e., the relation between Nu and Na,
but it could be easily extended if relevant information source
is available. The relation between two aspects is also not
considered for simplicity in this work.

We assign weights to HIN links to quantify the relation
strength between each pair of objects in the network. There
are four types of relations defined in HIN. To measure the
weight of links in type Luu, we employ the Pearson correlation
coefficient [16] with P between the latent representations of
two users. The Pearson correlation coefficient is also used to
measure the weight of links in type Lii with Q. The weight
of links in type Lui is measured as:

wui = (rui − r̄ui)/S ,

where S denotes the rating scale of D, rui is the original
rating in R scored by user u on item i, and r̄ui indicates the
average rating towards both user u and item i, which can be
calculated by averaging all the ratings scored by u and scored
on i. Furthermore, we measure the link weight for Lia via a
binary indicator shown as below:

wia =

{
1 if i contains a

0 if i does not contain a
,

which indicates the association between item i and aspect a.
At this point, the constructed NW-HIN has dense link

connections (i.e., relations), which may require a large amount
of storage when the data size is large. In practice, a threshold
can be pre-set to filter the links whose weights are lower than
the threshold, so that the obtained network could be relatively
sparse. Generally, a larger construction threshold indicates a
sparser NW-HIN with stronger relation links.

B. Explanation Path Mining & Quantification
After obtaining the NW-HIN, the interpretation of the given

user-item pair is constructed as a group of Explanation Paths

Targeting User

Recommended Item

Recommended because an item sharing the same aspect is similar to 
the item that was  strongly rated by the targeting user

1

2

3

Recommended because a similar item was strongly 
rated by a user who is similar to the targeting user

Recommended because a similar item is associated with the 
item that was strongly rated by the targeting user

0.81

0.87

1

1
0.73

0.56

0.66 0.68
1

1

0.83

0.79

0.65

0.76

1 1

1
1

1 1

Fig. 2: Explanation path mining in a mock-up example.

(EP) between the user object u ∈ Nu and the item object
i ∈ Ni in the network. Each link in the path corresponds to
one type of relation in B. The lower part of Fig. 2 shows some
examples of EPs for a given recommendation pair in a mock-
up NW-HIN. Conventional interpretation methods, such as
user-based [8] and item-based [10] methods, can be regarded
as a special case of EP, where each path contains only one
intermediate object and the length is fixed as 2. In these
cases, the heterogeneous information sources in recommender
systems are not fully utilized. For the proposed SEP method,
to limit the number of valid paths, as well as to keep each path
concise, we set the maximum length of each EP as 5 [17].

Given the NW-HIN, we employ a revised depth-first search
algorithm [18] to mine the candidate EPs. To keep the path
mining process efficient, we perform network pruning, so that
only the partial network region around the targeting user and
recommended item is preserved. Specifically, we only keep
the nodes that are interconnected with both targeting user and
recommended item within the maximum length 5. The search
algorithm is further run on the pruned NW-HIN, to avoid EP
mining on irrelevant network regions.

Nevertheless, it is not the case that all the mined EPs
have good qualities for interpretation. To further evaluate
the qualities of EPs, relevant criteria or metrics are needed
for EP quantification. Specifically, we design three heuristic
metrics for the EP quality evaluation, i.e., Path Credibility,
Path Readability and Path Diversity. Each evaluation metric
corresponds to one part of the properties for mined EPs. We
introduce each metric, respectively, as follows.

Path Credibility: The credibility of an EP measures the
overall link weight of the path. Typically, a higher weight for
EP indicates a greater credibility of the corresponding inter-
pretation. As we discussed in the NW-HIN construction part,
different relations have different link weights, which actually
signifies their disparate strength in delivering interpretations.

669



Therefore, referring to the social estimation method [19], the
credibility of EP k is defined as:

QC(k) =

lk∏
l=1

wl, (2)

where lk denotes the length of EP k, and wl represents the
link weight of relation l on EP k.

Path Readability: The readability of an EP measures the
legibility of corresponding explanations, which is also referred
as the understandability of interpretation [20]. In reality, there
are multiple factors that may affect the comprehension of in-
terpretations [21]. Specifically, in our scenario, the readability
of EP k is defined as follows:

QR(k) = 1
/√

lk · tnk , (3)

where tnk denotes the total number of object types for inter-
mediate nodes in EP k. As shown in Eq. (3), the readability
of an EP is inversely proportional to the path length and
the number of intermediate object types, which matches our
common senses in reality.

Path Diversity: The diversity of an EP reflects its variety in
relation types among all the links. According to some studies
in psychological science [22], a key factor affecting human’s
comprehensions and decisions is the information diversity. In
general, human beings are more efficient to comprehend a
relation chain with diverse information, and are more likely to
accept the decision led by this chain. Thus, diversity is another
perspective to be considered when evaluating the quality of
EPs. Referring the work [23], the path diversity of EP k can
be calculated as below:

QD(k) = loglk+1(t
e
k + 1), (4)

where tek denotes the total number of relation types in EP k.
From Eq. (4), we can see that the path diversity equals to 1
when tek = lk, and equals to 0 when tek = 0.

After quantifying credibility, readability and diversity for
EPs, we can denote an EP k as a 3-dimensional column
vector k, i.e., k = [QC(k), QR(k), QD(k)]ᵀ. By utilizing the
vectorized representations, it is convenient to further select out
EPs with better qualities.

C. Unsupervised Path Sorting
In practice, although we set an upper bound to the length

of EPs, there could still be a large number of available EPs
for a given recommendation pair, due to the large size of
the constructed NW-HIN. To effectively deliver interpretation
results, we want to select a small set of EPs with good qualities
instead of using all mined EPs. Generally, in the selection
process, the top ones are expected to have higher credibility,
readability and diversity. To achieve this, our proposed SEP
method sorts all the EP candidates, and extract the top-K paths
as our final interpretation.

Sorting EPs is a non-trivial task, since the three metrics
we defined can possibly affect each other. For example, an
EP with higher credibility could be less readable, and an EP
with higher diversity also could be less credible. Thus, when
sorting paths, a comprehensive score is needed to incorporate

all of three metrics simultaneously. One straightforward way
is to calculate the weighted sum over different metrics, and
then select paths with top summation scores. However, the
summation requires weights assignment to different metrics,
usually determined by human, which makes it very subjective
in different applications. To this end, in the proposed SEP
method, we sort all the EPs in an unsupervised way, and learn
the ranking function solely based on the vectorized EPs.

Instead of directly learning the ranking function, we utilize
its inverse function, i.e. principal curve [24], to obtain the
approximate mapping from the EP vector space to the ranking
score. Due to some geometric properties [25], Bezier curves
is commonly used for smooth function modeling in many
applications. Referring to work [26], we employ the ranking
principal formulated with cubic Bezier curves to achieve the
comprehensive path sorting. Based on the definition of Bezier
curves, our cubic ranking principal is formulated as follows:

f(s) =

3∑
h=0

b3h(s)yh, s ∈ [0, 1], (5)

where s denotes the ranking score, b3h(s) = 6(1−s)3−hsh

h!(3−h)! is

the Bernstein polynomials, and yh ∈ R
3 (h = 0, 1, 2, 3)

indicates the control point of curve. In the matrix form, the
cubic ranking principal curve is

f(s) = YTs′, (6)

where

Y = (y0,y1,y2,y3),T =

⎡
⎢⎣
1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

⎤
⎥⎦ , s′ =

⎡
⎢⎣
1
s
s2

s3

⎤
⎥⎦ .

Given a candidate set of EPs mined from NW-HIN, i.e. K =
{k1,k2, · · · ,kP }, we aim to learn the optimal control points
Y of the principal curve and the corresponding ranking score
s in Eq. (6). By minimizing the corresponding residual [24],
our ranking problem can be further formulated as the following
nonlinear optimization problem.

min
Y,s

L(Y, s) =
P∑

p=1
‖kp −YTsp‖2 (7)

s.t. Y ∈ [0, 1]3×4, (8)

s = (s1, s2, · · · , sP ) ∈ [0, 1]1×P , (9)

sp = (1, sp, s
2
p, s

3
p)

ᵀ, ∀p ∈ [1, P ]. (10)

Eq. (8) corresponds to the fact that our defined three metrics
for EP k, i.e. QC(k),QR(k),QD(k), all fall into the interval
[0, 1]. Eq. (9) is set to guarantee the existence of relevant
derivatives. With the alternating optimization method, the local
minimizer (Y∗, s∗) could be obtained iteratively through the
following two equations:

argmin
Y

P∑
p=1

‖kp −Y(t)Tsp(t)‖2 = Y(t+1), (11)

2

(
∂Y(t+1)Tsp

∂sp

)ᵀ (
kp −Y(t+1)Tsp

) ∣∣∣∣
sp=sp

(t+1)

= 0, (12)
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where t denotes the iteration index. The existence of the
feasible minimizer (Y∗, s∗) has been demonstrated in [27].

To further represent the closed-form solution of local min-
imizer (Y∗, s∗), we reformulate the problem in a matrix
form. Organizing all the elements in K into the matrix
K, we have K = [k1,k2, · · · ,kP ]. And the matrix S is
formulated by combining all different sp (∀p ∈ [1, P ]), i.e.
S = [s1, s2, · · · , sP ]. Then, the objective function in Eq. (7)
can be rewritten as

L(Y,S) = ‖K−YTS‖2. (13)

Letting the derivative of L(Y,S) equal to 0 regarding to Y,
we have

2 (YTSSᵀTᵀ −KSᵀTᵀ) = 0. (14)

Thus, the local optimizer Y∗ can be explicitly indicated by

Y∗ = KSᵀTᵀ (TSSᵀTᵀ)+ = K (TS)
+
, (15)

where (·)+ denotes the Moore-Penrose inverse computation.
Given the intermediate result S(t), we can update Y by

Y(t+1) = K
(
TS(t)

)+
, and finally get Y∗ after the conver-

gence. With Y(t+1) and Y∗, S(t+1) and S∗ can be obtained
from the solutions of sp (∀p ∈ [1, P ]) to Eq. (12), which
hardly has explicit general roots due to its high order.

With the aid of S∗, considering the three metrics com-
prehensively, we can sort all EPs according to their ranking
scores. After the sorting process, top EPs with good qualities
will be selected out and further delivered to end-users for
effective interpretations.

IV. ALGORITHM IMPLEMENTATION DESIGN

Considering the robustness and efficiency of the SEP
method in practice, we still have two obstacles ahead in
algorithm implementation design. The first one lies in the com-
putational issues caused by matrix inverse and ill-conditioned
updates, and the second one results from the large size of
the EP candidate set which largely slows the speed of sorting
process. In this section, we employ two approaches to handle
the practical issues, respectively.

A. Computation Relief
According to Eq. (15), we know that the control matrix

Y is iteratively updated by Y(t+1) = K
(
TS(t)

)+
. For

each iteration, there exists two computational issues: (i) the

computation of
(
TS(t)

)+
is expensive, which could make the

convergence much slower; (ii) the path representation matrix
K could be ill-conditioned, which may lead to the instability
of Y due to a small fluctuation ΔS(t). These two issues are
directly related to the efficiency and robustness of the proposed
SEP method. Here, in algorithm implementation, we use the
Richardson iteration method [26] [28], to handle these two
computational issues.

To relieve the computation from Moore-Penrose inverse
calculation, we define a diagonal matrix J, whose diagonal
elements are the L2 norm of columns in (TS(t))(TS(t))

ᵀ.
Then the update equation of Y can be expressed as:

Y(t+1)=Y(t)−α(t)
[
Y(t)(TS(t))(TS(t))

ᵀ−K(TS(t))
ᵀ]J−1,

where α(t) is the parameter to guarantee the convergence of Y.

Typically, α(t) is defined as 2
/
(λ

(t)
max + λ

(t)
min) , where λ

(t)
max

and λ
(t)
min respectively denote the maximum and minimum

eigenvalue of (TS(t))(TS(t))
ᵀ.

With the aid of the Richardson iteration method, we can
avoid the expensive computation caused by Moore-Penrose
inverse, and enhance the robustness of the iterative updates.

B. Sorting Acceleration

Another practical issue in algorithm implementation is the
large size of the EP candidate set. With a large EP set K =
{k1,k2, · · · ,kP }, the dimensions of K and S would also be
very large, which may lead to the low speed of sorting process.
For further acceleration, we use the Pareto frontier cull [29]
to preprocess the EP candidate set to reduce its size.

The goal of the Pareto frontier cull is to filter out the EP
candidates that are unlikely to be the top ones after sorting.
Here, in our scenario, an EP candidate ki is said to dominate
another candidate kj if the credibility, readability and diversity
of ki are all no smaller than those of kj . Mathematically, ki

dominating kj can be indicated as:

ki 	 kj ⇐⇒

⎧⎪⎨
⎪⎩
QC(ki) ≥ QC(kj)

QR(ki) ≥ QR(kj)

QD(ki) ≥ QD(kj)

,

where the three inequalities do not take the equal sign simulta-
neously. If an EP cannot be dominated by any other candidates,
then this EP candidate is called the non-dominated EP. The
ultimate goal of the Pareto frontier cull is to find the non-
dominated EPs, and further feed them into the path sorting
process. In this way, the number of EP candidates fed into the
sorting process would be significantly reduced, and it can save
lots of efforts in ranking these dominated EPs.

C. Algorithm Steps and Time Complexity

By now, it is sufficient for us to summarize the overall steps
of the proposed SEP method. Generally, the inputs of SEP
are a pretrained recommender system R with latent factors
P,Q, dataset D, targeting user u, recommended item i and
some threshold values δ, ξ for NW-HIN construction as well
as convergence determination. The outputs of SEP are the top-
K EPs for the given recommendation pair. The specific steps
of the SEP method are illustrated by Algorithm 1.

In Algorithm 1, the time complexity of Line 1 and Line 2
together is O(|V| + |E|), where V and E respectively denote
the node set and link set of the NW-HIN. The node/link
construction takes O(1) time per operation and depth-first
search needs O(|V|+ |E|) time in total. From Line 3 to Line
8, O(3|K| + |K|) = O(|K|) time is needed for quantification
and filtering, where K is the EP candidate set mined from the
NW-HIN. For the sorting part, from Line 9 to Line 14, it needs
time O(|K| + 3 × 4) = O(|K|), depending on the size of Y
and S. Thus, the overall time complexity of the proposed SEP
method is O(|V|+ |E|+ |K|).
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Algorithm 1: Proposed SEP method

Input: R, P, Q, D, u, i, δ, ξ.
Output: top-K EPs between u and i

1 Construct NW-HIN for R based on P, Q, D with δ;
2 Mine the EP candidate set K in NW-HIN with u and i;
3 for each EP k ∈ K do
4 Calculate the credibility of EP k by Eq. (2);
5 Calculate the readability of EP k by Eq. (3);
6 Calculate the diversity of EP k by Eq. (4);

7 Formulate the EP representation matrix K;
8 Employ Pareto frontier cull on K;
9 Initialize the control matrix Y and score matrix S;

10 while ΔL(Y,S) > ξ do
11 Update Y using the Richardson iteration method;
12 Estimate the solutions of Eq. (12) for S;
13 if ΔL(Y,S) < 0 then
14 break;

15 Sort all the EPs according to ranking scores;
16 Export the top-K EPs as the final interpretations.

TABLE I: Dataset information in experiments.

Datasets #Users #Items #Aspects #Ratings Scale

ML-100K 943 1, 682 19 100, 000 (1, 5)
ML-1M 6, 040 3, 900 18 1, 000, 209 (1, 5)
GB-10k 53, 424 10, 000 5, 841 5, 976, 478 (1, 5)

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
SEP method on three real-world datasets. With the experiments
conducted in this paper, we aim to answer three key questions
as follows.

• How is the ability of the proposed SEP method in providing
relevant interpretations, compared with the conventional and
state-of-the-art methods?

• How much influences do the interpretations, generated from
the SEP method, have to the given recommender system
regarding to specific recommendation pairs?

• How do the defined metrics, including credibility, readability
and diversity, affect the interpretations generated from the
proposed SEP method?

A. Three Real-World Datasets

We use 3 publicly available benchmark datasets for recom-
mender systems. Each dataset contains both rating information
and relevant content information. For different datasets, we
may use different attributes as our content information accord-
ing to specific applications. The statistics of the 3 datasets are
given in Table I.

• MovieLens-100K1: ML-100K is a popular benchmark
dataset for movie recommendation. It contains a lot of
content information besides ratings. In our experiments, we

1https://grouplens.org/datasets/movielens/100k/

use movie genre attributes as the aspect objects, assuming
that users may like the movies of certain genres.

• MovieLens-1M2: ML-1M is another benchmark dataset for
movie recommendation. Similarly, we use movie genre as
the aspect objects with the same assumption.

• GoodBooks-10K3: GB-10K is a book recommendation
dataset. Besides ratings in the dataset, we employ book
author attributes as the aspect objects, with the assumption
that users may like the books by certain authors.

B. Baseline Methods
We compare the SEP method with several baseline methods

introduced as below:

• UBI (User-Based Interpretation) [8]: UBI is a conventional
interpretation method which matches the targeting user with
similar users as the interpretation results.

• IBI (Item-Based Interpretation) [10]: IBI is another conven-
tional interpretation method which generates interpretation
as the closely associated items given the recommended one.

• EMF [30]: EMF is one of the state-of-the-arts for inter-
preting recommender systems. Specifically, this method was
proposed targeting recommendation models based on matrix
factorization. The generated interpretations from EMF are
typically the neighbor-based explanations.

• UniWalk [31]: UniWalk is another state-of-the-art method
for interpretable recommender systems. This method was
also proposed based on matrix factorization models. The
interpretations are generated by weighted random walks.

• KNN-U (K-Nearest Neighbors for Users) [32]: KNN-U
selects the nearest users given the targeting one in the
representation space of users.

• KNN-I (K-Nearest Neighbors for Items): KNN-I picks the
nearest items given the recommended one in the represen-
tation space of items.

C. Experiment Settings
In our experiments, the given recommender system R is

constructed based on the Non-negative Matrix Factorization
(NMF) model, and the latent representation dimension D is
set as 100. We apply the three datasets(i.e. ML-100K, ML-
1M and GB-10K) for method evaluation. In order to have
reproducible recommendation results for interpretation, we
split each dataset where 80% data instances are used for
training and 20% data instances are used for testing. Also, to
guarantee that all methods run under the same conditions, we
use the same threshold for network constructions. Specifically,
relation links of Luu,Lii,Lui are constructed if their link
weights are above the 95-th percentile within the same relation
type, and all Lia links are built without thresholds. This setting
is different from work [30] and [31], where the thresholds
for network constructions are both set as 0. For the baseline
method UniWalk, we use Luu relation links instead of user
social links during the network construction, since the applied
datasets do not include social information. Also, we set the
convergence threshold ξ in the SEP method as 10−3. Finally,

2https://grouplens.org/datasets/movielens/1m/
3https://github.com/zygmuntz/goodbooks-10k/
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Fig. 3: Applicability comparison among different methods in different datasets.

all of our experiments are conducted under Intel(R) Core(TM)
i7-6850K CPU @3.60GHz with 128 GB memory.

D. Applicability of SEP Method

In this part, we evaluate the applicability of the SEP method
compared with the baseline methods. The motivation behind
is that, for some recommendation pairs, some interpretation
methods are very likely to generate NULL as output (e.g.,
UBI returns nothing if it fails to find any similar user who
has purchased the recommended item). We apply two metrics
in our experiments, i.e. Mean Explainability Precision (MEP)
and Mean Explainability Recall (MER), which are used in [30]
and [33]. Specifically, MEP and MER are defined as follows.

MEP =
∑
u∈U

|Iiru |
|Iru|

/
|U| , MER =

∑
u∈U

|Iiru |
|Iiu|

/
|U| ,

where U indicates the sampling user set, Iiru is the inter-
pretable recommended item set for user u, Iru denotes the
recommended item set for user u, and Iiu is the interpretable
item set for user u. In our experiments, |U| is set as 10,
Iru is determined by the recommendation strategy, and Iiu
depends on the specific interpretation method. Specifically,
|Iru| equals to K with the top-K recommendation strategy, and
|Iiu| equals to the total number of items which have at least one
explanation to user u. In general, the larger MEP and MER
values correspond to the better applicability of methods.

The experiment results are shown in Fig. 3. Here, we
compare the MEP and MER performance of the proposed
SEP with the baseline methods on three different datasets.
From Fig. 3(a) to 3(c), we observe that the proposed SEP

method significantly outperforms the other four methods on
MEP metric, which essentially means that almost every rec-
ommendation pair from R can be interpreted by the SEP
method. From Fig. 3(d) to 3(f), as for the MER metric, we
observe that the proposed SEP method slightly outperforms
the other four methods in the small dataset ML-100K, and
gets the competing performance as well in the larger datasets,
where UniWalk ranks first in ML-1M and GB-10K. Overall,
it is observed that SEP has a significant enhancement in
MEP performance and has a competitive MER performance
in most cases. Comprehensively, the proposed SEP method is
demonstrated to have strong applicability in providing post-
hoc interpretations for recommender systems.

E. Effectiveness of SEP Method

In this part, we demonstrate the effectiveness of the pro-
posed SEP method. Particularly, we aim to test whether our
generated interpretations accurately reflect how recommender
systems make decisions in pairing users with items. The main
idea of evaluation is to utilize adversarial samples [34] [35].
Specifically, we knock out from training data the objects
that appear in the interpretation results, and then retrain the
whole system with the modified training data. With the new
recommender system, for a specific recommendation pair, we
further compare the new prediction score with the original
one to see how it changes. We choose the recommendation
pairs with high rating scores to be observed. If the rating
score decreases significantly after training data modification,
it indicates that the removed objects play important roles in
score prediction of the given recommendation pair. In our
experiments, we compare the SEP method with three baseline
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(c) Average ratings in GB-10K.

Fig. 4: Average ratings after removing relevant objects in different datasets.

TABLE II: Effects of sorting metrics in different scenarios.

Datasets ML-100K ML-1M GB-10K

Scenario I II III IV I II III IV I II III IV

Average Credibility 0.267 0.278 0.286 0.382 0.203 0.225 0.229 0.314 0.126 0.158 0.163 0.256
Average Readability 0.511 0.389 0.485 0.323 0.395 0.286 0.363 0.248 0.375 0.274 0.358 0.252
Average Diversity 0.830 0.797 0.743 0.656 0.842 0.816 0.721 0.623 0.832 0.819 0.725 0.619

methods including KNN-U, KNN-I and Random Selection
Algorithm (RSA). The RSA involved here is a naive baseline
method for user/item selection, where users and items are
randomly selected to be knocked out. For the objects selected
from the SEP method (only for Nu and Ni), they are knocked
out sequentially as they appeared in the top EPs, along with
the number of removed object gradually increases. The objects
from KNN-U and KNN-I are knocked out sequentially accord-
ing to their distance from the targeting user and recommended
item, respectively.

The experiment results are shown in Fig. 4. Here, we
compare the average rating of 10 original top recommendation
pairs before and after the corresponding modifications in
different datasets. As shown in Fig. 4, the removal of inter-
pretation objects from SEP significantly affects the prediction
scores of the given recommendation pairs. As for the objects
selected by KNN-U and KNN-I, due to their high correlations
with the recommendation pairs in the representation space,
the average rating score also largely decreases when we knock
them out in training. We observe that the interpretation objects
selected by SEP have the competing influences under the given
recommender system, compared with the objects picked by
KNN-U and KNN-I, which straightforwardly demonstrates the
fact that the interpretations generated from the SEP method are
reasonable and meaningful.

F. Effects of Sorting Metrics

In this part, we explore the effects of different metrics,
including credibility, readability and diversity, on the generated
EPs. For contrast, we consider four different scenarios listed
as below:

• Scenario I: Interpretations are generated considering all
metrics, i.e., credibility, readability and diversity;

• Scenario II: Interpretations are generated based on their
credibility and diversity;

• Scenario III: Interpretations are generated according to
their credibility and readability;

• Scenario IV: Interpretations are generated simply based
on their credibility.

For each scenario, we pick out 10 recommendation pairs
and generate the top-3 interpretations for each pair. We will
compare the changes of credibility, readability and diversity
for the generated EPs across different scenarios. The value of
each metric is averaged over all the EPs we obtain.

Table II presents the experiment results of this part, indicat-
ing the changes of the average credibility, average readability
and average diversity in different scenarios. Using the results
of scenario I as the baseline, we can observe that the EPs
generated in scenario II are less readable in average after
we remove the readability metric in interpretation extraction.
Similarly, in scenario III, the average diversity of the generated
EPs significantly decreases, compared with scenario I, after
we ignore the corresponding metric in extraction. In scenario
IV, when ignoring both readability and diversity, the gener-
ated EPs are even less readable and diversified in average,
although the average credibility is relatively higher. According
to the results, we can observe that the proposed SEP method
extracts interpretations in a more comprehensive way, and the
credibility is somewhat sacrificed for acquiring more readable
and diversified interpretations.

G. Case Study

To intuitively understand the interpretations generated by
the proposed SEP method, we further give a case study here
drawn from the GB-10K dataset. Fig. 5 shows a sampled
recommendation pair in GB-10K and its corresponding top-
3 EPs extracted by the proposed interpretation method. From
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Fig. 5: A case study of recommendation interpretation.

the figure, we can observe that the generated interpretations
from SEP are capable to provide explanations for user-item
pairs in a flexible way, where different EPs associated with
diversified semantics effectively help system administrators
understand why particular items are recommended to them
by the system. In this example, the book ”Harry Potter and
the Cursed Child” is recommended to user #117. The first
reason provided by SEP is that a similar user #176 bought
a book (“Harry Potter and the Sorcerer’s Stone”) which is
highly associated with the recommended one. The second
generated reason is that the book (“Harry Potter and the
Chamber of Secrets”) you purchased previously shares the
same author (J.K. Rowling) with the recommended one. The
third reason provided is that a similar user #8052 highly rated
the recommended item. Besides, the generated interpretations
are intuitively readable and diversified, where the relation
chains are readily comprehensible and the relation types are
multifarious. Comprehensively, the proposed SEP method can
effectively and flexibly extract relevant interpretations for the
specific recommendation pair.

VI. RELATED WORK

A. Interpretability from Graph Construction
Since graph is a natural representation for objects and

relations, lots of graph-based models have been employed
in recommender systems to extract interpretations. Our work
partially falls into this category. In [11], the authors proposed
a tripartite graph model named TriRank to make top-K recom-
mendations with relevant explanations. In TriRank, the inter-
pretations are fully constructed based on the aspects extracted
from user reviews. Similarly, the authors in [31] built a graph
model, named UniWalk, to interpret recommendations through
similar users and items by making weighted random walks. In
[36], a user-item bipartite graph was built for explanations,

and relevant interpretations were extracted by conducting co-
clustering on the constructed graph. As a special case of graph,
tree-based model has also been investigated for interpretable
recommendations in [37], where relevant interpretations are
generated through a designed attention network.

B. Interpretability from Topic Modeling

Another methodology for interpretability is topic modeling.
Generally, the topic modeling is achieved with additional
textual information, and the interpretations would be for-
mulated through a series of topical words. In [38], through
combining latent factor models and Latent Dirichlet Allocation
(LDA), the authors designed the HFT model to help end-
users understand the results by extracting important topics.
With similar ideas, [39] modeled both user preference and
item characteristics in a unified space, and further delivered
relevant interpretations by the latent topics learned from user
reviews. The authors in [40] proposed another topic modeling
method, named sCVR, and the interpretations from sCVR are
constructed using these top topics rated by users embedded
in relevant viewpoints. Besides, there are also some recent
work on topic modeling with probabilistic graphic models for
interpretable recommendations, such as [41] and [42].

C. Interpretability from Knowledge Embedding

Knowledge embedding is a new methodology arisen re-
cently for interpretable recommendations. In [43], the authors
employed the rules and programming on knowledge graph to
generate relevant interpretations. Particularly, with a person-
alized PageRank method, items and other graph objects are
jointly ranked to produce corresponding recommendations and
explanations. The authors in [44] used the knowledge graph
embedding technique to extract explanations with a novel
soft-matching algorithm, where the complicated relationships
in knowledge base are briefly represented by embedding
vectors. Creatively, in [45], the authors proposed an end-to-end
system, named Ripple Network, to fully utilize the knowledge
graph for interpretable recommendations. The interpretations
generated from Ripple Network are typically a set of paths
incorporated in the corresponding knowledge graph.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a post-hoc interpretation method
called SEP for explaining the results of recommender systems.
Specifically, by utilizing the latent representations from the
recommendation model, together with the rating and attribute
information, we first construct an unified information network.
For each recommendation pair, a set of EPs are then ex-
tracted to indicate how the targeting user are related to the
recommended item. Furthermore, through the unsupervised
sorting process, the top-K EPs can be extracted from the
path candidate set according to three designed metrics, i.e.,
credibility, readability and diversity. Experiments on three real-
world datasets demonstrate the applicability and effectiveness
of the proposed SEP method. The future extensions of this
work may include exploiting textual reviews, incorporating
structured knowledge base, and combining dynamics of rec-
ommendation scenarios into interpretation process.
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