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ABSTRACT
RNN models have achieved the state-of-the-art performance in a
wide range of text mining tasks. However, these models are of-
ten regarded as black-boxes and are criticized due to the lack of
interpretability. In this paper, we enhance the interpretability of
RNNs by providing interpretable rationales for RNN predictions.
Nevertheless, interpreting RNNs is a challenging problem. Firstly,
unlike existing methods that rely on local approximation, we aim
to provide rationales that are more faithful to the decision making
process of RNN models. Secondly, a flexible interpretation method
should be able to assign contribution scores to text segments of
varying lengths, instead of only to individual words. To tackle these
challenges, we propose a novel attribution method, called REAT, to
provide interpretations to RNN predictions. REAT decomposes the
final prediction of a RNN into additive contribution of each word in
the input text. This additive decomposition enables REAT to further
obtain phrase-level attribution scores. In addition, REAT is generally
applicable to various RNN architectures, including GRU, LSTM and
their bidirectional versions. Experimental results demonstrate the
faithfulness and interpretability of the proposed attribution method.
Comprehensive analysis shows that our attribution method could
unveil the useful linguistic knowledge captured by RNNs. Some
analysis further demonstrates our method could be utilized as a
debugging tool to examine the vulnerability and failure reasons of
RNNs, which may lead to several promising future directions to
promote generalization ability of RNNs.
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1 INTRODUCTION
The RNNs, such as LSTM [14] and GRU [5], have achieved the state-
of-the-art performance in a variety of text classification tasks. These
deep text classification models have became increasingly deployed
in different web applications, including sentiment classification [42],
named entities recognition [32], textual entailment [4], etc. Despite
the superior performance, RNNs are often criticized by their lack of
interpretability, and are often treated as black-boxes [21]. The lack
of understanding of the mechanism behind RNN predictions not
only reduces the acceptance from end-users towards the deployed
predictors, but also limits ability of system developers in diagnos-
ing the model, searching the reasons for wrong predictions, and
improving the model architectures. Therefore, it is highly desirable
to explore the interpretability of RNNs, so as to provide insight of
how they process text inputs and make inferences therefrom.

It is possible to provide interpretability for RNNs from two per-
spectives: adding interpretable components to RNN models or per-
forming post-hoc attribution [9]. The former category integrates
interpretability directly into the structure of deep models, and usu-
ally resorts to attention mechanism [20, 44]. However, the atten-
tion components only provide an indirect indicator of contribu-
tion scores. For classification tasks, it is not clear which specific
class these attention weights contribute to [27]. In contrast, the
philosophy of post-hoc attribution is to provide interpretation to
predictions made by a pre-trained black-box model without any
architectural modification. Post-hoc attribution aims to attribute
the prediction of a model to its input features, e.g., words in a text
classification task, and produce a heatmap as interpretation, indicat-
ing the contribution of each feature to a particular class of interest.
In this paper, we follow the post-hoc attribution strategy, as it could
provide understandable rationale to the given predicted label from
the model while keeping the underlying model status intact.

Although post-hoc attribution has been extensively studied for
understandingMLP and CNNs [10], attribution for RNN predictions
is still a technically challenging problem. First, one challenge lies
in how to guarantee that the interpretations are indeed faithful
to the original model. Many previous attribution work, including
back-propagation based methods [7, 13], perturbation based meth-
ods [16, 19], and local approximation based methods [35, 36], all
follow the philosophy of local interpretation. That is, they gener-
ate interpretable approximation of the original model around the
neighborhood of a given prediction to be explained. However, it
is not guaranteed that the generated interpretations accurately
reflect the decision making process of the original model [6, 12].
In this case, it is hard to tell whether an unexpected interpreta-
tion is caused by misbehavior of the model or limitation of the
attribution method. Second, it is challenging to develop a flexible
attribution method which could generate attribution scores to text
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segments (e.g., phrases) of varying lengths. Prior work for RNNs
attribution mainly focuses on identifying word-level contribution
scores [7, 35, 41], which assigns a real-value score for each of the
words, indicating the extent to which it contributes to a particular
prediction. However, word-level attributions fail to explain why
RNNs are successful to process sequences where the order of the
data entries matters. Consider an example of sentence sentiment
analysis, “I do not dislike cabin cruisers.” expresses a neutral opin-
ion. Word-level attribution methods may accurately identify that
the word “dislike” has a negative contribution for this prediction,
but they fail to capture that the negation word “not” has shifted its
polarity and the word combinations “not dislike” have a positive
impact for model prediction.

In this paper, we propose a decomposition based attribution
method, called REAT (REcurrent ATtribution Method), to provide
interpretation for given predictions made by a RNN in a faithful
and flexible manner. Through modeling the information flowing
process of the hidden state vectors in RNN models, REAT could
decompose the final prediction of a RNN into additive contribu-
tion of each word in the input text. Since REAT is constructed by
directly leveraging the information propagation process from hid-
den state vectors to the output layer, it enjoys the benefit of high
faithfulness to the original RNN model. This method not only can
quantify the contribution of each individual word to a prediction,
but also could naturally be applied to identify the contribution
of word sequences. It thus enables the illumination of how RNNs
make use of sequential information, as well as how they capture
long-term dependencies. In addition, REAT is widely applicable to
different recurrent architectures, including LSTMs and GRUs, and
their bidirectional versions. Furthermore, based on the observation
that language usually exhibits hierarchical structures, we expand
REAT to a hierarchical attribution method, to represent the contri-
butions at different levels of granularity. The major contributions
of this paper are summarized as follows:
• We propose a RNN attribution method based on additive decom-
position, called REAT, which could provide both word-level and
phrase-level attribution scores.

• REAT is applicable to different RNN architectures. We demon-
strate its applicability to three standard RNN architectures, in-
cluding GRU, LSTM and Bidirectional GRU.

• Experimental results on two sentiment analysis datasets validate
the faithfulness and interpretability of the proposed method.

• We demonstrate that REAT could be utilized as a debugging tool
to analyze the useful linguistic knowledge captured by RNNs and
examine the vulnerability and failure reasons of RNNs.

2 PRELIMINARIES
In this section, we start by introducing post-hoc attribution that
serves as the basic attribution scheme in this paper. Then we intro-
duce three representative RNN architectures as well as the output
layer which transforms the hidden state into probability output.

2.1 Post-hoc Attribution
Notations: Consider a typical multi-class text classification task,
a RNN-based classification model can be denoted as f : X → Y ,
where X is the text space, and Y = {1, ...,C} denotes the set of

output classes. The RNN model accepts an instance x ∈ X as input,
and maps it to an output class: f (x) = c ∈ Y . Assume the input
is composed of a sequence of T words: x = {x1, ...,xT } and each
word xt ∈ Rd denotes the embedding representation of the t-th
word. The high level idea of post-hoc attribution is to attribute the
prediction f (x) of a RNN model to its input features x and output
a heatmap indicating the contribution of each feature xt ∈ x to
a particular class of interest c . Specifically, we target to generate
attributions for a RNN prediction which is specified as follows:
Phrase-level Attribution: We first partition the input text into
meaningful phrases (coherent pieces of text) and then attach an
attribution score to each individual phrase. Given one index phrase
as query. The index set of a phrase that we want to calculate its
attribution score is denoted as: A = {q, ...r } where 1 ≤ q ≤ r ≤ T .
We indicate the attribution score for the targeting phrase as S(xA).

2.2 RNN Architectures
RNNs come in many variants with different architectures, which
results in different mapping functions f . In this paper, we discuss
three representative RNN architectures that are fundamental and
have been widely used in many applications. The common formu-
lations in different RNN architectures motivate the design of our
interpretation approach.
LSTM: In a Vanilla RNN, at any time step in a sequence, the hidden
state ht is calculated based on its previous hidden state ht−1 and
the current input vector xt :

ht = tanh(Whxxt +Whhht−1 + bh ). (1)

Comparing to the Vanilla RNN, LSTM makes two major changes.
Firstly, LSTM introduces a cell state ct that serves as an explicit
memory. Secondly, instead of simply updating the hidden state ht
in Eq. (1), LSTM uses three gates: input gate it , forget gate ft , and
output gate ot to update the hidden state ht .

it = σ (Wixxt +Wihht−1 + bi )

ft = σ (Wf xxt +Wf hht−1 + bf )

ot = σ (Woxxt +Wohht−1 + bo )

дt = tanh(Wдxxt +Wдhht−1 + bд)

ct = ft ⊙ ct−1 + it ⊙ дt

ht = ot ⊙ tanh(ct ).

(2)

where eachW and b represent weight matrix and bias vector re-
spectively, and ⊙ denotes element-wise multiplication.
GRU: GRU makes some slight modifications on the basis of LSTM.
It only has two gates, i.e., reset gate rt and update gate ut . Besides,
it merges the cell state and hidden state into a single hidden state
ht . The updating rule of hidden state is denoted as follows.

rt = σ (Wrxxt +Wrhht−1 + br )

ut = σ (Wuxxt +Wuhht−1 + bu )

дt = tanh(Wдxxt + rt ⊙Wдhht−1 + bд)

ht = ut ⊙ ht−1 + (1 − ut ) ⊙ дt .

(3)

Bidirectional GRU: This model is constructed by putting two
independent GRUs together. The word sequences are fed into one
GRU in normal time order, and in reverse time order into another.
For each network, the hidden state is updated using the same rule as



Eq. (3). For the sake of brevity, we use subscriptsn and r to represent
the normal and reverse network respectively. For classification
tasks, the final hidden vector fed into the output layer is constructed
by concatenating the hidden vector at time step T for the normal
GRU and the hidden vector at time step 1 for the reverse one:

h = hT ,n ⊕ h1,r , (4)

where symbol ⊕ denotes concatenation operation of two vectors.
Both hT ,n and h1,r contain the information of the whole text. Hid-
den state hT ,n encodes the information of the normal text (from
x1 to xT ), while h1,r captures the information in the inverse text
(from xT to x1). In the remaining part of this paper, we use BiGRU
to denote Bidirectional GRU.

2.3 RNN Output Layer
To serve the purpose of multi-class text classification, a discrimina-
tive layer is added after the activation vector hT of the last hidden
layer at time step T . This layer takes the hidden state hT as input
and turns it into a logit vector z using a weight matrixW :

z =WhT , (5)

and then produces the class probabilities using a softmax layer
which converts the logit zc for a class c into a probability yc , by
comparing it with other logit values:

yc = softmax(z)c =
exp(zc )∑C

k=1 exp(zk )
. (6)

3 METHODOLOGY
In this section, we introduce the proposed attribution method for
explaining RNN predictions. We first present a general method for
phrase-level RNN prediction attribution, and then apply it to three
widely used RNN architectures. Finally, we expand the method to
enable hierarchical attribution schemes.

3.1 Phrase-level Attribution Method for
Recurrent Models

3.1.1 A Naive Attribution Approach. From the last section, we know
that RNNs possess a series of hidden state vectors {ht }t=1, ...,T ,
where each vectorht stores information about the past input blocks,
ranging from time step 1 to t . A crucial property of the hidden state
vector is that it is updated from time step to time step. Knowing
how much information is accumulated at each time step enables
us to derive the contribution of that time step towards the final
prediction. Intuitively, we denote the response of the RNN model to
word xt , and thereby the information gained at step t , as follows:

h̃t = д(xt ) = ht − ht−1. (7)

In this way, we can consider the final hidden state vector hT
to contain information accumulated at T time steps, denoted as:
hT =

∑T
t=1 h̃t =

∑T
t=1(ht − ht−1). Then, we can decompose the

logit zc (see Eq. (5) ) for target class c using a sequence of factors:

zc =WchT =
T∑
t=1

Wc (ht − ht−1). (8)

It can be treated as the additive contribution of each word in the
input x to the output logit (unnormalized output probability) of
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Figure 1: An illustration of the summarized updating rule
for the RNN hidden state vectors.

class c . Therefore, the contribution of word xt towards the logit zc
can be calculated as:

S(xt ) =Wc (ht − ht−1). (9)

However, this decomposition has a severe shortcoming. The un-
derlying assumption of this formulation is that all evidence accu-
mulated up to time step t − 1 has been transferred to time t . This
violates the updating rules of all the three architectures listed in
Sec. 2.2. Actually, it fails to take into consideration the forgetting
mechanism of RNNs. For example, both LSTM and GRU have ex-
plicit gates to model the forgetting and remembering mechanism,
which serves the purpose of controlling information flow and calcu-
lating how much proportion of information derived from previous
time steps should be kept.

3.1.2 The Proposed Recurrent Attribution Method (REAT). Many
variants of RNNs share a similar form of hidden state updates.
We summarize a common rule which can be applied to different
recurrent network architectures, as illustrated in Fig. 1. The rule
maintains a hidden state ht which summarizes information for past
sequences. Also, at each time step t , the hidden state is updated
using the following equation:

ht = αt ⊙ ht−1 + h̃t , (10)

where αt ∈ [0, 1]d
′

so that only partial evidence obtained by RNN
from previous t − 1 steps is brought to the time step t . Here d ′ is
the dimension of hidden state vectors. A higher value of α means
that the RNN model preserves more important information from
previous time steps. Here h̃t = д(xt ) denotes the evidence that a
RNN obtains at time step t , but note that it is no longer defined
as in Eq. (7). Some RNN architectures obey this rule exactly, like
GRU, while some other architectures follow this rule approximately,
such as LSTM. Based on this hidden state updating rule, we can
iteratively trace back the generation of hT and decompose the logit
value zc into the following form:

zc =WchT =
T∑
t=1

Wc (h̃t ⊙
T∏

k=t+1
αk ). (11)

Replacing each h̃t with ht − αt ⊙ ht−1, we can reformulate the
additive decomposition as:

zc =
T∑
t=1

Wc [(ht − αt ⊙ ht−1) ⊙
T∏

k=t+1
αk ]. (12)

The main benefit of Eq. (12) comparing to Eq. (11) is that we do not
need to know the exact form of h̃t . Merely knowing the hidden state
vector ht and the updating parameter vector αt will be sufficient to
derive the decomposition. Eq. (12) can be considered as the additive



ℎ1 ℎ𝑞 ℎ𝑟 ℎ𝑇

𝑥1 𝑥𝑞 𝑥𝑟 𝑥𝑇

Evidence
Updating

Evidence
Forgetting

𝑧 𝑦

Figure 2: An illustration of the proposed method.

contribution of each word xt towards the logit zc , which is the
unnormalized probability for target class c . By taking out the term
relevant to time step t , we can derive the contribution value for a
single word xt at the current time step:

S(xt ) =Wc [(ht − αt ⊙ ht−1)︸               ︷︷               ︸
Updatinд

⊙

T∏
k=t+1

αk︸    ︷︷    ︸
Forдett inд

]. (13)

The above formulation within the square brackets is the element-
wise multiplication of two terms. The left term denotes the updating
evidence from time t − 1 to t , i.e., the contribution to class c by the
input word xt . The right term represents the forgetting mechanism
of RNN. The evidence that a RNN has gathered at time step t grad-
ually diminishes as the time increases from t + 1 to the final time
step T . That is to say, only part of the updating evidence will have
impacts on the classification task at time step T .

Based on the word-level additive attribution formulation in
Eq. (13), we can conveniently derive the phrase-level attribution.
For a phrase xA, where A = {q, ...r }, 1 ≤ q ≤ r ≤ T , its attribution
score S(xA) can be denoted as:

S(xA) =Wc [(hr −
r∏
j=q

α j ⊙ hq−1)︸                    ︷︷                    ︸
Updatinд

⊙

T∏
k=r+1

αk︸    ︷︷    ︸
Forдett inд

]. (14)

Similar to word-level attribution, phrase-level attribution S(xA)
also contains two terms. The left term within the square brackets
in Eq. (14) represents the updating evidence from time step q − 1 to
time r , while the right term denotes how much percentage of the
evidence has been forgotten from time r + 1 to T . We illustrate this
process in Fig. 2. It is worth noting that the key component here
to derive phrase-level attribution score for a RNN classifier is to
obtain the hidden state vectors and the updating vectors. Usually,
only one feed forward operation is needed to derive phrase-level
attribution score, which can be implemented efficiently.

3.2 Applications to Specific Architectures
In this section, we apply the proposed idea to three standard RNN
architectures, including LSTM, GRU and BiGRU.

3.2.1 GRU Attribution. The hidden state vector updating rule for
GRU is written as:

ht = ut ⊙ ht−1 + (1 − ut ) ⊙ дt , (15)

which conforms with the paradigm in Eq. (10). Therefore, for a
phrase xA, where A = {q, ...r }, 1 ≤ q ≤ r ≤ T , we can directly

replace αt in Eq. (14) with the updating gate vector ut of the GRU
model, and obtain the phrase-level attribution score S(xA):

S(xA) =Wc [(hr −
r∏
j=q

uj ⊙ hq−1) ⊙
T∏

k=r+1
uk ]. (16)

3.2.2 LSTM Attribution. Although it is difficult to directly match
the LSTM updating rule of hidden state ht in Eq. (2) to the paradigm
in Eq. (10), the update of the cell state ct adheres to the expected
updating format in Eq. (10). It is denoted as: ct = ft ⊙ ct−1 + it ⊙дt ,
where ft is the forgetting gate of LSTM.

Based on the updating rule from the cell state ct to hidden state:
ht = ot ⊙ tanh(ct ), approximately we can obtain:

ct ∼
ht
ot
, (17)

where the right term is a element-wise division. Thus we approx-
imate the updating rule of the hidden state vector for LSTM as
below:

ht =
ft ⊙ ot
ot−1

⊙ ht−1 + h̃t . (18)

Then, we can further decompose the final hidden state vector hT
into the following formulation:

hT =
T∑
t=1

(ht −
ft ⊙ ot
ot−1

⊙ ht−1)) ⊙
T∏

k=t+1

fk ⊙ ok
ok−1

. (19)

For a phrase xA, where A = {q, ...r }, 1 ≤ q ≤ r ≤ T , we can obtain
the attribution score S(xA):

S(xA) =Wc [(hr −
r∏
j=q

fj ⊙ oj

oj−1
⊙ hq−1) ⊙

T∏
k=r+1

fk ⊙ ok
ok−1

]. (20)

3.2.3 BiGRU Attribution. In this section, we illustrate how the
proposed method can be applied to bidirectional architectures. The
last hidden state hT ,n at time step T of the normal GRU uses the
identical decomposition as in Sec. 3.2.1. As for the reverse GRU, we
use the hidden state vector at time step 1 in order to capture the
information from 1 to T , which can be decomposed as follows:

h1,r =
T∑
t=1

(ht,r − ut,r ⊙ ht+1,r ) ⊙
t−1∏
k=1

uk,r . (21)

Recall that the final hidden vector fed into the classification
layer is the concatenation of the hidden vector at time step T for
the normal GRU and the hidden vector at time step 1 for the reverse
GRU, i.e., h = hT ,n ⊕ h1,r . As such, the logit value is computed as
zc =Wc (hT ,n⊕h1,r ). To obtain the attribution score for a phrase xA,
where A = {q, ...r }, we first calculate the updated hidden evidence
for the normal network and the reverse network respectively. We
then concatenate these two updated hidden evidence, and multiply
it withWc to produce the contribution scores.

S(xA) =Wc [((hr,n −

r∏
j=q

uj,n ⊙ hq−1,n ) ⊙
T∏

k=r+1
uk,n )⊕

((hq,r −
r∏
j=q

uj,r ⊙ hr+1,r ) ⊙

q−1∏
k=1

uk,r )].

(22)
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Figure 3: The proposed phrase-based attribution method is
naturally compatible with sentence parsing.

Regular expression

Verb chunks < V ERB > ∗ < ADV > ∗ < PART > ∗ <

V ERB > + < PART > ∗

Noun chunks < DET >?(< NOU N > + < ADP |CON J >

)∗ < NOU N > +

Table 1: Regular expression matching.

3.3 Automatic Attribution Generation
The developed method so far can only calculate the contribution
score of a phrase whose beginning and ending in x are already
specified. A natural question that arises is: how to comprehensively
analyze and combine the contributions of different parts of an
input text, so as to explain the response of RNNs spanning on
the whole text. A naive way is to exhaustively select phrases of
different length and starting points, and compute their contribution
scores respectively. However, such search scheme will span over
a lot of redundant and trivially overlapping text segments. In this
case, the redundant amount of interpretation information may be
overwhelming to users. Traditional word-level interpretation can
be seen as a special case of our method by simply setting the phrase
length as one, but its flexibility is limited.

To design an interpretation scheme with both desirable under-
standability and flexibility, we apply text parsing into the attribution
method. The general idea is illustrated in Fig. 3. The parse tree is
derived from certain existing text parsing algorithm. Here xn de-
notes a word, and si denotes a non-terminal symbol (i.e., a POS
tag or a phrase type). Our attribution method will be applied to
each of the selected phrase sequences. The phrases within each se-
quence are semantically meaningful and mutually non-overlapping.
In this way, we obtain interpretation of different granularity on
a sentence. The interpretation is thus more compatible with the
cognition habits of human.

In this work, we partition sentences using regular expression
matching [25] to divide each sentence into meaningful phrases.
Specifically, we use two regular expressions shown in Tab. 1 to par-
tition the sentence into continuous noun and verb chunks. Take the
sentence “The movie does n’t serve up lot of laughs.” for example.
A middle-level phrase sequence obtained from parsing could be
“{The movie} {does n’t serve up} {lot of laughs}.”, which correspond
to noun chunk, verb chunk, and noun chunk respectively. Then we
feed the sentence into the RNN and the attribution method. The

SST2 Yelp

# training texts 6920 80000
# development texts 872 1999

# test texts 1821 5492
Table 2: Dataset Statistics

SST2 Yelp

LSTM 80.4% 92.2%
GRU 81.9% 90.2%

BiGRU 80.9% 93.5%
Table 3: Prediction accuracy of the three RNN architectures
on SST2 and Yelp dataset.

output is a sequence of phrases along with corresponding attribu-
tion scores, capturing the most significant phrases contributing to
the network prediction during the prediction lifetime. In practice,
each original text may end up with 2 (word-level and phrase-level)
or 3 (word-level, phrase-level, and clause-level, where clause de-
notes part of a sentence or a complete sentence containing a verb)
hierarchies, and users can obtain a hierarchical interpretation of
the prediction.

4 EXPERIMENTS
In this section, we present the experimental results in order to
answer the following research questions (RQs).
• RQ1 - Does the generated attribution faithfully reflect how the
original RNN model makes predictions?

• RQ2 - Does the proposed RNN attribution method outperform
alternative approaches in terms of interpretability?

• RQ3 - Could hierarchical interpretation comprehensively capture
the evidences for prediction at different levels of granularity?

• RQ4 - How to use the proposed attribution method to analyze
the useful insights captured by RNNs?

• RQ5 - How to use the proposed attribution method to analyze
the misbehavior of RNNs and ultimately promote RNNs’ gener-
alization capability?

4.1 Datasets
We conduct our experiments on two publicly available sentiment
analysis datasets, whose statistics are shown in Tab. 2.
Stanford SentimentTreebank 2 (SST2) [39] - It contains 2 classes
(negative and positive). The numbers of instances for training set,
development set and test set are 6920, 872, and 1821 respectively.
Yelp Polarity (Yelp) [46] - It consists of reviews originally ex-
tracted from the Yelp Dataset Challenge 2015 data. Zhang et al. [46]
constructed the Yelp reviews polarity dataset by considering stars 1
and 2 as negative, and considering 4 and 5 as positive. The numbers
of instances for training set and test set are 560,000 and 38,000
respectively. We use a subset of this dataset by filtering out texts
whose length is larger than 40, and then randomly select part of the
samples from the training set as development set. Ultimately, the
dataset contains 80000, 1999, and 5492 instances for training, de-
velopment, and test set respectively, with each polarity occupying
around half of the instances in each set.



4.2 Experimental Setup
For each classification model used in our experiments, it contains a
word embedding layer to transform words to fixed length represen-
tation vectors, a recurrent network layer to transform word embed-
dings to hidden state vectors, and a classification layer for output.
Specifically, the pre-trained 300-dimensional word2vec word em-
bedding [25] is utilized to initialize the embedding layer. For those
words that do not exist in word2vec, we initialize their embedding
vectors with some random values. The dimension of hidden state
vectors is 150 for both LSTM and GRU, and 300 for BiGRU. The
classification layer is composed of a dense layer and a softmax
nonlinear transformation. The Adam optimizer [18] is utilized to
optimize these models and the learning rate is fixed to 10−3. We
train each model for 20 epoches and select the one with the best
performance on the development set. Note that we freeze the em-
bedding layer when training all models on SST2, while fine-tune
the embedding parameters when training on Yelp. Empirical results
show that this can lead to better prediction performance for mod-
els on both datasets. We evaluate the test accuracy with the best
performing model on the development set, and the performance
statistics on SST2 and Yelp dataset are reported on Tab. 3.

4.3 Baseline Methods
We evaluate the proposed REAT method by comparing it with five
baseline approaches.
• Vanilla gradient (VanillaGrad) [13]: Compute gradients of the
output prediction with respect to individual entries in word em-
bedding vectors, and use the L2 norm to reduce each vector
of the gradients to a single attribution value, representing the
contribution of each single word.

• Integrated gradient (InteGrad) [41]: Integrate all Vanilla gra-
dients using a linear interpolation between a baseline input and
the original input. Here the baseline input are sentences whose
word embedding values are all set to zeros.

• Gradient times input (GradInput) [7]: First calculate the gra-
dient of the output with respect to word embedding, and then use
dot product of the gradient vector and word embedding vector
as the contribution score for a word.

• LIME [35]: A model-agnostic interpretation method. It approxi-
mates the behavior of a RNN in the neighborhood of a given input
using an interpretable white-box model. Here, the interpretable
model is a sparse linear model.

• NaiveREAT: A simplified variant of the proposed method, as
introduced in Sec. 3.1.1. The attribution score for a single word
is calculated using Eq. (9).
It is worth noting that except NaiveREAT, the other four baseline

methods could only derive word-level contribution scores. To get
phrase-level or sentence-level contribution scores, we sum up the
scores of all word within a phrase or a sentence.

4.4 Attribution Faithfulness Evaluation
In this section, we evaluate the faithfulness of the attribution meth-
ods with respect to the target RNN models. We want to assess
whether the attribution results correctly reflect the prediction be-
havior of RNNs. In general, the faithfulness of an attributionmethod
is evaluated by deleting the sentence of the highest contribution

Models GRU LSTM BiGRU

VanillaGrad 0.272 0.243 0.068
InteGrad 0.255 0.253 0.113
GradInput 0.301 0.199 0.178
Lime 0.209 0.188 0.092
NaiveREAT 0.213 0.207 0.114
REAT 0.311 0.318 0.196

Table 4: Comparison about attribution faithfulness between
our method and the baseline methods.

score and observing the prediction changes of the target RNNs [29].
Specifically, the attribution method first produces contribution
scores for sentences in the text. Then, it is expected that once
the most important sentence is deleted, it will cause the probabil-
ity value to significantly drop for the target class. Here we define
faithfulness score as the metric:

Sfaithfulness =
1
N

N∑
i=1

(y(x(i)) − y(x(i)
\A)), (23)

where A denotes the sentence identified as the most predictive for
a prediction, and N is the total number of texts in the dataset. An
advantage of this metric is that no knowledge is required of ground
truth labels. Theoretically this metric can also be utilized to evalu-
ate word-level and phrase-level attributions. However, empirically,
we find some irrelevant words or phrases could also lead to big
probability drop, because they cause grammar or syntactic errors
instead of really changing the semantics [26, 37]. Therefore, we
only use this metric in sentence-level attribution scenarios.

We search in SST2 dataset for texts that contain two sentences
and use the word “but” as conjunction, and obtain a set with 142
texts. The faithfulness scores for different attribution methods on
SST2 dataset are reported in Tab. 4. The proposed method consis-
tently outperforms the baseline methods for all the three architec-
tures. This result demonstrates two advantages of REAT: (1) the
generated interpretations are highly faithful to original RNN, (2)
the generated phrase-level interpretations are accurate. Since the
NaiveREAT method does not consider the forgetting mechanism,
it may assign false positive contribution scores for the first sen-
tence in the testing texts. As a result, it is not faithful to the target
model and achieves relatively low faithfulness score comparing
to REAT. Besides, for the other baseline methods, they can only
output word-level attribution scores. Since the word-level scores
are not sufficiently faithful to the target model, the sentence-level
scores calculated by summing up the word-level scores will further
deviate from the prediction of the target RNN model. As a result,
these methods have only limited faithfulness performance.

4.5 Attribution Interpretability Evaluation
We evaluate the interpretability of the proposed method to show
whether the generated interpretations are reasonable from some
fundamental perspectives of human comprehension.We only search
for texts that contain both positive adjective words and negative ad-
jective words with obvious sentiment bias. The searching criterion
is whether a word belongs to the human annotated lists containing
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Figure 4: Word-level attribution heatmaps comparing with baseline methods, for a GRU prediction with 99.2% confidence as
positive sentiment. Green and red color denote positive and negative contribution of a word to the prediction, respectively.

SST2 Yelp

Models GRU LSTM BiGRU GRU LSTM BiGRU

VanillaGrad 41.0 42.3 26.9 57.6 44.4 38.4
InteGrad 44.9 52.6 42.3 58.6 42.4 33.3
GradInput 84.6 80.8 85.9 84.8 82.8 90.9
Lime 73.1 80.8 73.1 74.7 77.8 80.8
NaiveREAT 79.5 87.2 92.3 55.6 83.8 86.9
REAT 85.9 89.7 88.5 87.9 83.8 92.9

Table 5: Interpretability statistical comparison (in percent)
of our method with baseline RNN attribution methods.

both positive words1 and negative words2 [22]. We obtain a testing
set with 78 and 99 samples from SST2 and Yelp respectively. Then
we generate a attribution score after feeding each text sample to
a RNN, and evaluate the consistency of attribution with human
annotations. Here, we focus on analyzing the attribution scores of
these words for the positive sentiment side for all testing texts. The
interpretation is considered to be a match if the attribution scores
for positive words are lager than negative words, otherwise it is
treated as a mismatch. Take text “It is ridiculous, of course but it
is also refreshing” for example, if the attribution method assigns a
higher contribution score to positive word “refreshing” comparing
to negative word “ridiculous”, we consider it as a match. The final
interpretability score is judged by the ratio of matched cases:

Sinterpretability =
#match

#match + #mismatch
. (24)

We compare the interpretability score of the proposed method
with baseline methods on three RNN architectures over SST2 and
Yelp dataset. The results are presented in Tab. 5. The proposed
method ranks highest for five tasks among all six classification
tasks. We observe that the interpretability scores for the NaiveREAT
method, which is introduced in Sec. 3.1.1, are unstable across dif-
ferent models and datasets, partly due to the reason that it is not
faithful to the original recurrent model. Sometimes, NaiveREAT
could accurately capture the contribution score for strong senti-
ment word, such as for BiGRU prediction on SST2. In other cases,
it may assign some false positive and false negative attribution
1https://gist.github.com/mkulakowski2/4289437
2https://gist.github.com/mkulakowski2/4289441

GRU

LSTM

BiGRU

The fight scenes are fun but it grows tedious

The fight scenes are fun but it grows tedious

The fight scenes are fun but it grows tedious

Figure 5: Word-level attribution heatmaps for 3 RNN archi-
tectures. Green and red color denote positive and negative
contribution of a word to the prediction, respectively.

values, leading to lower interpretability scores. Another interesting
finding is that the interpretability of InteGrad does not outperform
VanillaGrad consistently on all cases. Besides, GradInput yields
consistently better performance comparing to VanillaGrad.

4.6 Qualitative Evaluation via Case Studies
We provide several case studies to qualitatively check the effective-
ness of the proposed method using heatmaps shown from Fig. 4
to Fig. 6. We use green color to denote positive contribution and
red color for negative contribution. Deeper color means higher
contribution to the prediction.

4.6.1 Visualization Comparisons with BaselineMethods. Wepresent
attribution visualization for a prediction made by GRU with 99.2%
confidence for positive sentiment, and compare it with the baseline
attribution methods. The results are shown in Fig. 4. The heatmap
shows that REAT not only identifies that words “enormously”,
“likely”, “aware”, “grasp” have positive contribution for the pre-
diction, but also captures that “absurd” has negative contribution.
It is consistent with human comprehension towards this sentence.
In contrast, VanillaGrad and InteGrad fail to attribute the negative
word; GradInput fails to identify the words that strongly and posi-
tively contribute to the prediction, thus can not explain why GRU
gives such a high positive prediction score to this text. Also, LIME
and NaiveREAT generate some noisy negative scores for irrelevant
words, such as “partly”, “it” and “,”.

4.6.2 Visualizations Under Different RNN Architectures. We com-
pare the word-level attribution results of three RNN architectures.
For a given text “The fight scenes are fun but it grows tedious”, GRU,
LSTM and BiGRU give positive prediction (51.6% confidence), posi-
tive prediction (96.2% confidence), and negative prediction (62.7%
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Figure 6: Visualization heatmaps for hierarchical attribution. Green and red color denote positive and negative contribution
of a word to the prediction, respectively.

confidence), respectively. We display the attribution heatmaps for
positive prediction for all three architectures in Fig. 5. GRU gives
nearly the same absolute value of attribution score for “fun” and
“tedious”. LSTM attributes more words positive contributions than
negative words, while BiGRU gives more words negative contribu-
tion scores. These attribution heatmaps well reflect the prediction
scores, which thus indicates that the interpretations could give
users understandable rationale for the predictions.

4.6.3 Visualization for Hierarchical Attribution. We also give the
visualization heatmaps of hierarchical attributions in Fig. 6. In
this case, we show the attribution scores of a negative sentiment
prediction with 99.46% confidence from a LSTM model. For the
word-level attribution, “does” has a negative contribution for the
prediction, while the combination “does n’t serve up” will have a
strong positive contribution for the prediction. The clause-level
attribution shows that the first clause has a relatively small negative
contribution for prediction, while the second clause has a strong
positive contribution for prediction. This hierarchical attention thus
could represent the contributions at different levels of granularity.

4.7 Linguistic Patterns Analysis
In this section, we apply REAT to analyze the linguistic patterns,
in order to comprehend what kind of linguistic knowledge in nat-
ural language has been captured by RNNs. We aim to understand
whether the linguistic patterns learned are consistent with human
cognition. Overall, the analysis of linguistic patterns is implemented
by obtaining the contribution score distributions for different syn-
tactic categories. We first tag each word in a text into different
part-of-speech (POS) categories. Here, the tagging is performed
using the NLTK package3. We then proceed by feeding that text to
the RNN model and use REAT to generate the contribution score
for each word. For each text, the class of interest is its prediction
label generated by the RNN model. After that, we summarize the
contribution scores for each syntactic category by averaging the
scores for all words in that category contained in the dataset.

We employ the SST2 test set to analyze linguistic patterns for
the three RNN architectures, and use boxplot to illustrate the distri-
bution patterns, as illustrated in Fig. 7. Note that we rank different
categories according to the median value. Besides, we combine
different verb forms (e.g., past tense and present tense) to a single
one, since we observe these verb variants have similar distribution
patterns. Also, to capture the primary contribution of each POS
category towards the prediction, we omit the outlier points when

3https://www.nltk.org/

drawing the boxplot, i.e., those data points that are located outside
the fences of the boxplot. An interesting discovery from the box-
plots is that, the RBS category, which denotes superlative adverb
such as “best” and “most”, achieves the highest median value on all
three RNN architectures. This is consistent with our human cog-
nition since we indeed rely on these superlative words to express
strong emotions. Besides, the adjective category (JJ) ranks relatively
high among all the three architectures. The noun category (NN)
has a near-zero median for all three architectures. It indicates that
these recurrent models are more sensitive to adjectives than nouns,
which also makes sense to common cognition habits. In addition,
we can observe that the attribution score distribution patterns are
similar between GRU and LSTM, while they are very distinct from
that of BiGRU. This is partly due to the reason that BiGRU has a
bidirectional structure, which will make it use different evidence in
making predictions. These findings demonstrate that these RNNs
have learned some useful patterns and pay special attention to
words that well represent the underlying task.

4.8 Model Misbehavior Analysis
In this section, we apply REAT as a debugging tool to analyze the
misbehavior of RNNs. This is motivated by the observation that
RNN models may not always meet the expectations of humans,
since their performances are still not perfect (see Tab. 3). In this
case, the attribution method can be utilized as the tool to analyze
their vulnerability and reason the failure cases.

4.8.1 Attribution-based Failure Case Debugging. We use a sample
text in the SST2 test set to illustrate this process. The LSTM gives
a 99.97% negative sentiment prediction for a text “Schweiger is
talented and terribly charismatic, qualities essential to both movie
stars and social anarchists”. However, this prediction makes no
sense to humans, since it is in fact a strong positive sentiment
text. Using the proposed attribution method, we find that “terri-
bly” makes the highest contribution for this negative prediction.
One possible explanation is that the LSTM model only captures
the meaning similar to “terrible”, and ignores its other meanings
relevant to “extremely”, since “terribly” is a polysemant. To validate
this hypothesis, we further generate the attribution score distribu-
tion for two words “terrible” and “terribly” (see Fig. 8), and find
that these two words have consistently negative contribution for
positive sentiment. It comes as no surprise, since we use pre-trained
word2vec as word embeddings, which are fixed and context-free
representations and are limited in performance. Besides, the train-
ing set only contains a limited number of apperances of “terribly”.
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Figure 7: POS category score distributions of three RNN architectures. The x axis denotes attribution scores.

Figure 8: Attribution score distribution for two words.

This makes the model fail to learn language polysemy and capture
the context dependent meaning of “terribly”.

4.8.2 Attribution-based Adversarial Attack. Based on the above
attribution analysis, we can perform adversarial attacks using in-
terpretable perturbation. Recent work shows that DNNs are fragile,
where a small perturbation could dramatically change their pre-
diction results [11, 24, 30]. We change the word “terribly” to its
synonyms “extremely” and “very”, as shown in Tab. 6. As the result,
the prediction for this text shifts from strong negative to strong
positive for both conditions, even though the real meaning of the
original text is unchanged. Beside this example, such adversarial
attack finding applies to other texts in SST2 dataset. We search for
texts in test set of SST2, which contain word “extremely” and are
originally assigned positive predictions by the LSTM classifier. We
change the word “extremely” in the original text to “terribly”, as
can be seen in Tab. 7. Although the modified texts are semantically
identical to our humans, both predictions of these two samples
switch from strong positive to strong negative, demonstrating to
some extent the vulnerability of this LSTM classifier.

4.8.3 Discussion of Attribution-based Model Generalization En-
hancement. The derived attribution method can also be employed
to promote the generalization performance of RNN classifiers. Al-
though all the three pretrained RNN classifiers could achieve 100%
accuracy on training set of SST2, all of their accuracy on the test

Attribution

Improve model generalization

Data RNN

1 Check training data

2 Use context-aware 
word embedding

3 Regulate RNN training

Figure 9: Utilizing attribution to improve models.

set are below 82%. This big gap indicates that the RNN classifiers
have overfitted to the training set and may have memorized the
artifacts and biases that widely exist in texts. Through examin-
ing the failure reasons using the the proposed attribution method,
or through attacking the RNN classifiers using attribution-based
adversarial samples, we could identify the problem of the RNN
classifier. We further propose three directions to promote the gen-
eralization ability of RNN classifiers, from the perspective of the
training data, word embedding or recurrent model, respectively,
as illustrated in Fig. 9. First, if attribution statistic analysis shows
that the RNN has learned lots of bias from the training data, then
we can check the training data to reduce the data imbalance or
data leaking problem to make sure the training data is less biased.
Second, if attribution analysis tell us that trained RNN cannot cap-
ture context dependent meanings of words, then we can replace
context-free and fixed word embeddings, such as word2vec [25]
and GloVe [31], to context-aware embeddings, such as the recently
proposed ELMo [33], ULMFiT [15] and BERT [8]. Third, if the attri-
bution analysis indicates that the RNN heavily relies on superficial
correlations in the training data, then we can add a regularizer to
regulate the training behavior of the original RNN model. Bridging
attribution with improving model generalization is a challenging
topic, which is beyond the length of this paper and will be further
investigated in our future research.



Text Prediction

Original Schweiger is talented and terribly charismatic, qualities essential to both movie stars and social anarchists. Negative (99.97%)
Adversarial Schweiger is talented and extremely charismatic, qualities essential to both movie stars and social anarchists. Positive (81.29%)
Adversarial Schweiger is talented and very charismatic, qualities essential to both movie stars and social anarchists. Positive (99.53%)

Table 6: Interpretable adversarial attack for a LSTM classifier based on attribution.

Text Prediction

Original Occasionally melodramatic, it ’s also extremely effective. Positive (99.74%)
Adversarial Occasionally melodramatic, it ’s also terribly effective. Negative (99.00%)
Original Extremely well acted by the four primary actors, this is a seriously intended movie that is not easily forgotten. Positive (99.98%)
Adversarial Terribly well acted by the four primary actors, this is a seriously intended movie that is not easily forgotten. Negative (87.70%)

Table 7: Interpretable adversarial attack for a LSTM classifier based on attribution.

5 RELATEDWORK
Interpretable machine learning is a research topic covering a wide
range of directions [3, 9, 17, 23, 43, 45]. In this section, we focus on
post-hoc and local interpretation methods which are most relevant
to ours and briefly review methods that could provide interpreta-
tions for RNN predictions. These attribution methods can be further
classified into the following three main categories.
Back-propagation Based Methods This line of work calculates
the gradient or its variants of the output with respect to the in-
put, for a particular class of interest, using back-propagation to
derive the contribution of words. The philosophy is to identify the
words whose variation will most significantly lead to the change of
output probability. In the simplest case, the gradient signal is back-
propagated, which is first proposed in CNN image classification [38]
and later introduced to provide attribution for text classification
in NLP. In NLP, gradients are computed with respect to individual
entries in word embedding vectors, and then the L2 norm [13] or
the dot product of the gradient and the word embedding [7] is cal-
culated to reduce the gradient vector to a scalar, representing the
contribution of a single word. Besides gradient signal, some work
proposes to back-propagate different signals to the input, such as
the relevance of the final prediction score through each layer of the
network onto the input layer [1, 2], or only considering the positive
gradient signals in the back-propagation process [40].
Perturbation Based Methods The motivation of perturbation
based methods is that the most important word for a prediction,
once perturbed, will cause the largest probability drop of the output
for the target class. We can implement the perturbation in two
ways: omission [16, 19] and occlusion [34]. For omission, the word
is deleted directly [16]. As for occlusion, the word is replaced with a
baseline input. Here, a zero-valued word embedding is utilized [34].
However, both omission and occlusion could make the sentence
nonsensical. Since word order is an essential factor of RNN predic-
tions, either omission or occlusion can destroy the word order and
thus may trigger the adversarial side of RNN. Therefore, it cannot
guarantee that it is meaningful interpretations.
Local Approximation Based Methods These methods are based
on the assumption that behaviors of a complex and opaque model
around the neighborhood of a given input can be approximated by
a simple and interpretable white-box model [35]. A sparse linear
model, for example, can be utilized as the locally interpretablemodel

and the weight vector of the linear model is used as the contribution
score for a RNN prediction. Sometimes, even the local behavior
of a complex model can be extremely non-linear, where linear
explanation could lead to poor performance. Therefore, models
that are able to capture the non-linear relationship are utilized as
the local approximation model. For example, a local attribution
method can be designed using if-then rules [36]. Experimental
results demonstrate that the generated rules could be utilized to
explain both the current instance and some other relevant instances.

The most similar work to ours are two decomposition based
methods [27, 28]. However, their work are exclusively designed
for LSTM, while our attribution method is widely applicable to
different recurrent neural network architectures.

6 CONCLUSION
We propose a new RNN attribution method, called REAT, to provide
interpretations for RNN predictions. REAT decomposes the predic-
tion of a RNN as the additive contribution of each words in the
input text, in order to faithfully calculate the response of RNN to
the input. REAT could also generate phrase-level attribution scores,
which can be combined with syntactic parsing algorithms towards
attribution at varying granularity. We apply REAT to three standard
RNN architectures, including GRU, LSTM and BiGRU. Empirical
results on two sentiment analysis datasets validate that interpre-
tations generated by REAT are both interpretable to humans and
faithful to the original RNN classifier. We further demonstrate that
REAT can reveal the useful linguistic patterns learned by RNNs. In
addition, we find that RNN models sometimes capture biases in the
training data, which causes them to be vulnerable to adversarial
attacks. Leveraging the debugging ability provided by REAT, we
are able to identify the problems of RNN, and point out several
promising directions to improve RNN’s generalization ability. This
is a challenging topic and will be investigated in our future research.
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