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Abstract. Deep neural networks have achieved promising prediction performance,
but are often criticized for the lack of interpretability, which is essential in many
real-world applications such as health informatics and political science. Mean-
while, it has been observed that many shallow models, such as linear models or
tree-based models, are fairly interpretable though not accurate enough. Motivated
by these observations, in this paper, we investigate how to fully take advantage
of the interpretability of shallow models in neural networks. To this end, we pro-
pose a novel interpretable neural model with Interactive Stepwise Influence (ISI)
framework. Specifically, in each iteration of the learning process, ISI interactively
trains a shallow model with soft labels computed from a neural network, and
the learned shallow model is then used to influence the neural network to gain
interpretability. Thus ISI could achieve interpretability in three aspects: importance
of features, impact of feature value changes, and adaptability of feature weights
in the neural network learning process. Experiments on both synthetic and two
real-world datasets demonstrate that ISI could generate reliable interpretation with
respect to the three aspects, as well as preserve prediction accuracy by comparing
with other state-of-the-art methods.
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1 Introduction

Neural networks (NNs) have achieved extraordinary predictive performance in many
real-world applications [19]. Despite the superior performance, NNs are often regarded
as black-boxes and difficult to interpret, due to their complex network structures and
multiple nested layers of non-linear transformations. This “interpretability gap” poses
key roadblocks in many domains – such as health informatics, political science, and
marketing – where domain experts prefer to have a clear understanding of both the
underlying prediction models as well as the end results [5]. In contrast, many “shallow”
models, such as linear regression or tree-based models, do provide easier interpretability
[3] (e.g., through inspection of the intermediate decision nodes) but may not achieve
accuracy on par with deep models. To bridge this gap, we investigate how to take
advantage of the interpretability of shallow models in developing interpretable deep
neural networks.

Recently, several efforts have been devoted to enable interpretability of deep models,
including visualization for feature selection in computer vision area [2, 24], prediction-
level interpretation [18] and attention models [7] in medical and other areas. These and
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related methods typically focus on results interpretability which explains results of each
individual sample separately [18]. In contrast, we focus on model interpretability which
can show the features influences to response variables regardless of individual samples;
that is, we aim to identify for each feature its importance (the contribution to the result)
and its influence (the impact of changes in the feature on changes in the result) [5].
Additionally, we aim to uncover aspects of the internal mechanism of the NN “black box”
by capturing how each feature adapts over training iterations. Recently, a widely-used
way to build such an interpretable neural network is to firstly train a complex but accurate
deep NN, and then transfer its knowledge to a much smaller but interpretable model [6].
However, this approach has several limitations. First, it makes use of the soft labels
computed from the deep model to train another shallow model, which ignores the fact
that the “dark” knowledge [1] learned at the end may or may not be the best to train
an effective shallow model. Second, parameters in NN are usually learned by complex
process, which makes NN hard to be understood while the method does not consider
that. So if we could show how each features is learned in NN, it can help interpret NN.

Motivated by these observations, we propose a novel framework ISI – an Interactive
Stepwise Influence model, that can interactively learn the NN and shallow models
simultaneously to realize both interpretability and accuracy. Specifically, ISI first uses a
shallow model to approximate the neural network’s predictions in a forward propagation.
Then, ISI uses fitted values of the shallow model as prior knowledge to train the next
learning step. In sum, the two parts in ISI – shallow models and the NN, interactively
influence each other in each training iteration.

During the process, ISI can be interpreted in three aspects: (i) Importance: ISI
calculates the contribution of each input feature; (ii) Impact: ISI gives the value changes
of predicted variable based on different feature value changes by a relatively simple
relationship; and (iii) Adaptability: ISI shows variations of feature weights changes in
learning process of NN. In experiment, we evaluate ISI on both synthetic and two real-
world datasets for classification problems. Specifically, we first evaluate the reliability of
ISI interpretability based on the correctness of feature importance and feature influence.
We also show the variations of feature weights changes in ISI updating process. At last,
we compare the prediction accuracy of ISI with traditional machine learning methods
and state-of-the-art methods such as CNN and MIMIC learning [6]. Our results show
that ISI can give utility interpretations from the three aspects and outperforms all the
other interpretable state-of-the-art methods in AUPRC and AUROC.

2 Related Work

NNs are widely used because of their extraordinary performance in fitting non-linear
relationships and extracting useful patterns [12]. However, in some real world applica-
tions, such as health care, marketing, political science and education, interpretability
provides significant insights behind the predictions. In such situations, interpretation can
be more important than prediction accuracy. NNs are limited used [4, 6, 7, 9] in those
areas because they are hard to interpret.

Some researchers have been working on the interpretability of models [8]. There is
an overview about making traditional classification models more comprehensible [10].
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Specifically, Wang et. al built an oblique treed sparse addictive model to make the
interpretable model more accurate [22]. [3] analyzed tree-based models by using a
training selected set to make the original model interpretable. [7] proposed an end-to-
end interpretable model RETAIN by using reverse time attention mechanism. Some
methods use visualization to find the good qualitative interpretations of intermediate
features [15]. [18] proposed LIME to learn an interpretable model locally around
each prediction. [9] investigated a guided feature inversion framework which could
show the NN decision-making process for interpretation. Another approach for the
interpretation methods are based on calculating the sensitivity of the output in terms
of the input. For example, if an input feature change can bring a significant prediction
difference, it means the feature is important to the prediction, such as [20]. Among those
methods, “distilled” methods [1, 11, 13] become popular because of their extraordinary
performance and strong interpretability. [1] “distilled” a Monte Carlo approximation
in Bayesian parameter estimation to consider the dark knowledge inside the deep NN.
Meanwhile, recent work showed that by distilling the knowledge, models not only gained
a good accuracy, but also maintained interpretability in the shallow models [6].

A popular interpretable “distilled” method [6] uses a shallow model as the mimic
model to interpret the final neural network results. However, since only final results are
learned, there could be a large gap between soft prediction score of NN and results of
the mimic shallow model, which may have an influence on the interpretation. Secondly,
parameters in NN are calculated by complicated training process (propagation) which
makes it harder to understand while traditional methods could not interpret that. If we
can show how the influence changes of input features in the training process, it can help
users better understand the neural network.

3 Preliminaries

Before we introduce the interpretable framework ISI, it is important to clarify the kind
of interpretability that we aim to achieve. Specifically, following previous work [6], we
focus on three aspects of interpretability which is the input feature importance, their
impacts and the adaptability for neural networks.

Formally, given a supervised neural network f : X → Y . We assume all input
features in X are explainable. xi represents ith input feature variable and i ∈ {1, 2, ...q},
where q is the number of input features. Let x = [x1, x2, ...xq] ∈ X represents corre-
sponding feature vector, and y = f(x). Our proposed NN targets the following three
aspects of interpretation:

– Importance: For each feature Xi, f can provide the corresponding contribution
βi ∈ R to y;

– Impact: If feature Xi changes 4Xi, f can provide the change 4y of y in a lin-
ear/tree based relationship;

– Adaptability: Since f is a NN, f has a learning process to update its parameters. f
can provide how each βi changes in each iteration.
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Notations Definitions

X ∈ Rn×k input matrix for sample x1 , ... xn
y ∈ Rn output vector for sample x1 , ... xn
g(·) ground true relationship fromX toY

θN = {w1
N, ...} parameters set of neural network

f(X; θ
(i)
N

) learned neural network in ith iteration

wiN ∈ R
i weight in layer i of f(X; θN ), i ∈ 1, ...h

ŷ(i) output of f(X; θ
(i)
N

)

πS = {w1
S, ...} parameters of mimic shallow model

ξ(X;π
(i)
S

) mimic shallow model of f(X; θ
(i)
N
, y)

ỹ(i) output of ξ(X;π
(i)
S

)

Table 1. Notations.

Here we target to perform “model in-
terpretability” rather than “results/local in-
terpretability” since latter explains results
of each example separately [18] while the
former shows the impact of features to re-
sponse variable and the interpretation is
not constrained by a single sample. For ex-
ample, the interpretable linear models [21]
can be used to explain the relationship
between diabetes and lab test variables.
Furthermore, humans are limited to under-
stand complex associations between variables [14]. Shallow models are considered as
more interpretable since they have simple structures explicitly expressing how features
influence the prediction [6]. So for the second aspect, we are tying to find similar variable
associations as shallow models to explain the feature impact. By combining the first two
aspects of interpretation, f can identify features that are highly related to response vari-
able. For the third aspect, we target to learn the changes of each input feature influence
during the NN parameter updating process.

4 Interpretable Neural Networks with Interactive Stepwise
Influence

The key idea of the proposed framework ISI is to use an interpretable model to ap-
proximate the NN outputs in the forward propagation, and then, update NN parameters
according to the output of the interpretable model. So in ISI , a NN f for gaining pre-
diction accuracy, and the shallow but interpretable model ξ for tuning f parameters to
make it interpretable. In this section, we first introduce our proposed framework ISI and
show how to utilize the ISI framework to gain the three interpretation aspects.Then we
provide details of ISI optimization.

4.1 The Proposed ISI Framework

In this section, we first introduce our novel ISI framework (shown in Figure 1) in details.
Suppose g : X → Y denote the prediction function, where X ,Y are its domain and
codomain, respectively. Samples (x1, y1), (x2, y2), ...(xn, yn) ∈ (X ,Y) constitute the
dataset (X,y). The goal is to train a traditional NN f(X; θN ), which is parameterized
by θN = {w1

N ,w
2
N , ...w

h
N}, wj

N is the jth hidden layer parameter for f . Parameters in
θN are get by minimizing the loss function LP (f(X; θN ),y). For example, it can be the
cross entropy loss function LP (f(X; θN ),y) = −

∑
i yilogŷi, and we minimize it to

get the optimal solution θ′N .
Based on the interpretation that we target, we dig into the neural network learning

process (backpropagation for parameters updating). For traditional neural network, the
optimized parameters θ′N is calculated from:

θ′N = argmin
θ
(i)
N

LP (f(X; θN ),y), (1)
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Fig. 1. (A) The standard NN learning architecture: Update parameters through backpropagation
from a NN output in each iteration. (B) MIMIC learning: First train a NN, and then train an
interpretable model using the output of the NN as soft labels. (C) ISI architecture: The first module
is a NN f used to gain accuracy. The second module is interpretable models ξ(i) embedded in f .
Instead of using the difference between forward propagation and ground truths for backpropagation,
we use forward propagation output as soft labels to train ξ, and then use the fitted output of ξ
to replace forward propagation output in backpropagation. ξ can be used to adjust f to provide
interpretations for f .

by backpropagations of iterations until it converges. Specifically, for each iteration i > 1
of backpropagation, it includes two parts:
(1) A forward pass to use learned θ(i)N in ith iteration and generate the current prediction
output: ŷ(i) = f(X; θ

(i)
N );

(2) Then a backward pass to update θ(i)N in f by minimizing the current loss function
value: θ(i+1)

N = θ
(i)
N − η∇θNL(ŷ(i),y), where γ is the learning rate;

Repeat (1)(2), we can get a sequence of θ(1)N → θ
(2)
N → ... → θ

(k)
N , ... until to a stable

state that |LP (ŷ(i+1),y)− LP (ŷ(i),y)| < ε, where ε ∈ R is the threshold.
As shown above, the training process is complicated and it is hard to find how each

input feature in X influences θN during the two parts of backpropagation, which also
makes the final neural network model hard to be interpreted. In our proposed ISI (shown
in Figure 1(c)), a mimic shallow model ξ(X;πS) is embedded in f training process to
adjust parameter updates in each iteration of f , where πS denote the parameters of the
shallow model ξ(X;πS), respectively. Based on that, we propose a new loss function
that can jointly train the shallow model ξ(X;πS) and neural network f(X; θ

(i)
N ) to gain

the interpretation:

θ∗N , π
∗
S = argmin

θN ,πS

LP (ξ(X;πS , f(X; θN ,y)),y), (2)

where LP (·) is the total loss function. Specifically, Equation 2 includes three parts:
neural network f(X; θN ) is trained based on ground truth y to ensure the accuracy of
ISI. Then different from mimic learning where shallow model ξ(X;πS) is fitted by the
final results of f and is used to interpret f , we jointly train ξ(X;πS) in the training
process of f , to ensure the close connection between mimic model and neural network,
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since it decreases the differences between fitted ξ̂ and f . Therefore, the shallow model
can better approximate and interpret the NN than mimic learning model. Finally, we
trained our joint model ISI by L(·,y) to gain interpretation. Details of ISI training
process is explained in Section 4.2.

In sum, compared with the other interpretable methods, there are two major benefits
of ISI: (1) The mimic shallow model ξ(X;πS) is jointly trained with neural network
f to ensure the close connection between them, rather than use the final results of f
and directly fitted ξ(X;πS) in traditional mimic learning process. Then ξ(X;πS) can
better be used for interpretation of f ; (2) We can use the trained ξ(X;π

(i)
S ) in each

parameter updating process to explain the feature influence in each iteration since they
are jointly trained. Specifically, we can record ξ in each iteration: instead of representing
the learning process as complex f (1) → f (2) → ... → f (k)..., it can be represented
by shallow models as ξ(1) → ξ(2) → ... → ξ(k)... which is easier to show the feature
influence in each iteration. For example, if the shallow models are linear models, their
corresponding parameters π(1)

S → π
(2)
S → ...→ π

(k)
S ... represent variations of feature

contributions of each input feature; if the shallow models are tree-based models, we can
use Gini importance to calculate the variations.

4.2 Optimization of ISI

Directly optimizing Equation 2 is hard and time-consuming. In this section, we discuss
how to optimize it. Specifically, we divide each learning iteration in three parts for
Equation 2 and formulate them as below:

1. Train the shallow model with soft labels: At the ith iteration, we utilize a loss func-
tion π(i)

S = argmin
πS

LI(ξ(X;πS), ŷ
(i)) to train the shallow model part ξ(X;πS).

Here ŷ(i) is the ith iteration output of f , so it contains the knowledge acquired by f .
2. Obtain predictions from the shallow model: The fitted output of the shallow

model is obtained by computing ỹ(i) = ξ(πS ,X) with optimized πS . The inter-
pretable patterns are contained in ξ, and it can also be used as a snapshot of the
learning process.

3. Update parameters of the neural network: We use the outputs ỹ(i) from the
shallow model, instead of ŷ(i) from the neural network, as an approximation
of NN forward prediction to compute errors and update NN parameters: θN =
argmin

θN

LP (ỹ
(i),y). Due to the relatively simple structure of ỹ(i), ỹ(i) makes NN

easier to be interpreted [6].

The procedure above is formally presented in Algorithm 1. We first initialize pa-
rameters wk,bk in each hidden layer k, then select a shallow model to be trained
in line 2 and 3. From line 4 to 7, we optimize parameters in the shallow model ξ
based on loss function LI(ξ(X;πS), ŷ

(i)). From line 8 to 14, we update the parame-
ters in f using backward propagation. We use gradient descent as an example. Note
here, if traditional gradient descent is used in LP (ỹ

(i)
(S),y) to update parameters wN

in f , we should calculate the derivative of ξ trained by LI(ξ(X;πS), ŷ
(i)). Even if
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Algorithm 1: Interactive Stepwise Influence (ISI) Model
Input : Data X = [xT1 ,x

T
2 , ...x

T
n ], y is the true label, C is the number of class y has, η

is the stepsize, γ ∈ (0, 1] is the fitting parameter, T is the maximum number of
iterations, h is the number of hidden layer

Output :y(f,ξ) is the output

1 Initialized Wtotal = {W1,W2, ...Wh},btotal = [b1,b2...bh];
2 Pick explainable model ξ;
3 for i from 1 to T do
4 Assign ŷ(i) by using forward-propagate of the inputs over the whole unfolded network;
5 for c ∈ Class do
6 Optimize objective function of LI(X; ξ(πS), ŷ

(i)) based on ξ to get ξ̂c
7 Calculate the fitted value ỹ← ξ̂c(X, ŷ

(i))

8 Calculate gradient dLP (y,ŷ(i))

dWtotal , dLP (y,ŷ(i))

dbtotal
;

9 Update Wtotal ←Wtotal − ηd̃LP (y, ỹ(i))/d̃Wtotal;
10 btotal ← btotal − ηd̃LP (y, ỹ(i))/d̃btotal based on previous step;
11 Assign ŷ(i+1) by using forward-propagate using updated parameter Wtotal,btotal;
12 Calculate loss function LP (y, ŷ(i+1));
13 if LP (y, ŷ(i+1)) increase then
14 Update η ← γη ;

15 Use updated Wtotal, btotal or πS to calculate y(f,ξ) based on performance.

ξ is differentiable, calculating its gradient is time consuming. So instead of letting
θN ← θN −η dLP (ŷ(i),y)/dθN , we first calculate the derivative of dLP (ŷ(i),y)/dθN .
Then we replace ŷ(i) with ỹ(i) in the calculated gradient equations in line 8 and 9.
We denote the procedure as θN ← θN − η d̃LP (ỹ(i),y)/d̃θN . Thus, ISI would not be
limited by non-differential shallow models.

5 Experiments

We conduct comprehensive experiments to evaluate the performance of ISI on the
three interpretation aspects and accuracy. In particular, we aim to answer the following
questions: (1) Can ISI provide reliable interpretations for its predictions, in terms of
giving proper feature contributions and unveiling feature influences? (2) Can ISI provide
reasonable interpretations for feature adaptability in its learning process? (3) Does ISI at
the same time have a good precision compared to the state-of-art methods?

5.1 Data and Setup

We use three datasets including one synthetic data (SD) and two real-world datasets,
i.e., MNIST and the default of credit card clients (D CCC) [17] for classification tasks.
Parametric distributions of different classes in SD are known as the basis to assess the
faithfulness of the three interpretation results from ISI. The two real-world datasets are
used to evaluate ISI interpretation utility and accuracy. Specifically, MNIST [16] is for
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handwritten digit classification, and D CCC is to explore features that have an influence
on the occurrence of default payment (DP). D CCC is randomly partitioned into 80%
for training and validation, and 20% for testing. We use widely used and relatively
robust interpretable shallow models [6]: Logistic regression (LR), Decision Trees (DT),
linear SVM, the state-of-art interpretable neural network model mimic learning [6], and
also neural networks ANN and CNN as baselines. Specifically, for the neural network
module in ISI and mimic learning, we use the same structure of ANN with three layers
where tanh and sigmoid are used as activation functions with considering the trade-off
between performance and computation complexity as well as for fair comparison. Cross-
entropy is used as the loss function. The CNN with two convolution layers, a pooling
layer and a densely-connected layer are used. Hyperparameters for all methods are tuned
by five-fold cross validation. Prediction accuracy is measured by AUPRC (Area Under
Precision-Recall Curve) and AUROC (Area Under receiver operating Characteristic
Curve) [6]. Results are reported by averaging over 100 random trails.

5.2 Interpretation Evaluation

We first test the interpretation ability of ISI in SD since ground truth is known. The task
is a binary classification where data samples are generated from a mixture of multivariate
Gaussian distributions {N (µ1,Σ1),N (µ2,Σ2)} of two classes. For each sample xi ∈
R(d1+d2), d1 and d2 are dimensions for informative and noise features respectively.
Informative features are used to separate the two classes. Noise features are appended
to evaluate interpretations, as those features are not expected to affect classification.
N1 = 1200 and N2 = 1500 denote the number of samples in each class. d1 = 6, d2 =
6× 20 = 120 and Σ1 = Σ2 are identity matrices. Each noise feature is generated from
independent standard normal distribution N (0, 1). To distinguish contributions among
different features, we set µ1 = [6, 5, 4, 3, 2, 1]T , µ2 = [−1,−1,−1,−1,−1,−1]T , so
the contributions of features are already sorted in a descending order according to their
importance. Figure 2(a) shows a 3-D visualization of SD.

ISI AUPRC AUROC
ANN + LR 0.8567± 0.0000 0.8850± 0.0000
ANN + DT 0.7200± 0.0438 0.7357± 0.0438
ANN + SVM 0.8731± 0.0016 0.9018± 0.0004
ANN + LASSO 0.8802±0.0096 0.9082±0.0067

Table 2. ISI performance of different inter-
pretable models.

Selected features indices NM NP
LASSO 1, 2, 3, 4, 5, (10, 15, 31, 30) 18% 0.20
MIMIC 1, 2, 3, 4, 5, (50, 68, 99, 103, 122) 22% 0.26

ISI 1, 2, 3, 4, 5, (71) 3% 0.03

Table 3. Feature selection performances of
different methods.

Table 2 shows the prediction accuracy of ISI embedded with different shallow models.
When the mimic shallow model part ξ uses a linear model such as LR, linear SVM
and LASSO, ISI has higher AUPRC and AUROC than that of tree-based models. This
indicates that linear classifiers are preferred, which matches the features associations
in synthetic data. The best accuracy performance is achieved by using LASSO in ISI,
so we use it for subsequent interpretation analysis. For the first interpretation aspect
“importance”of each feature, we first test the percentage of selected noise features for
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different models in Table 3 where parameters are tuned based on their best accuracy in
Table 4. Indices in the parameter represent noise features. “NM” in the table denotes the
possibility that the corresponding model contains noise features out of 100 trails. “NP”
is the average ratio of noise features in each model. Specifically, noise features appear
in 22% and 18% models over 100 random trails for LASSO and MIMIC respectively,
while noise features appear in only 3% of the models for ISI. Moreover, we calculate the
contributions of each feature by normalized coefficients of each linear model and Gini
importances of DT. The results of each interpretable method is shown in Figure 2(b).
We notice feature importance calculated by ISI are close to the true value. For second
aspect “impact”, since LASSO is selected in ISI shallow model part (shown in Table
2), if feature Fi changes4Fi, the probability that it belongs to a certain group changes
αi 4 Fi, where αi is the coefficient of Fi in LASSO. Those results indicate ISI can
provide more reliable interpretations.

Fig. 3. (a)(b) show the variations (adaptability) and variation rates of features contributions during
the learning process in SD. (c) illustrates contributions for some features in D CCC. (d) depicts
some parameter variations (adaptability) for D CCC.

Fig. 2. Fi is the ith input feature of SD. (a) uses three
features to give a 3-D visualization of SD. Different colors
mean different groups. (b) calculates feature contributions
of different interpretable methods based on the accuracy in
Table 4.

For the third aspect “adapt-
ability”, the NN f can be in-
tuitively explained using the
embedded shallow models in
ISI. The approximated variation
of each feature contribution is
shown in Figure 3(a)(b). They
are calculated by using features
weights (coefficients) of embed-
ded shallow models in each iter-
ation, since LASSO is selected
as shallow models. The varia-
tion rates in Figure 3(b) are the
weight differences of two adja-
cent iterations. As the learning
process proceeds, contributions
to the final results of each infor-
mative feature becomes more clear, at a fast rate especially in the early stages of training.
The weight of noise features approaches 0. It also matches the converge process in NN
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learning iterations. Such information may help people understand the final parameters of
neural network.

For real-word dataset, ISI also shows extraordinary and reliable interpretability in
terms of the three interpretable aspects that we targets. For MNIST, we select LASSO as
the shallow model part of ISI to interpret classification results according to best accuracy.
Figure 4(a) shows input pixels contributions measured by corresponding coefficients
in LASSO. The darker area means that the corresponding pixels have higher negative
relations to the class, while the lighter area means the weights have more positive
relations. Specifically, gray area means that the coefficients of corresponding pixels
in the shallow part are approximate to zero. For example, for pixels in an image with
high values, if they are in the lighter area, there is a higher probability that the image
would be classified to the corresponding digit. While if those pixels are in the darker
area, the image is less likely to be classified to the corresponding digit. Gray area means
the corresponding pixels have little contribution to detecting digit. Here we can observe
that the white areas sketch the outline of each digit and dark areas are near them. Gray
areas are far from the outline of digits. Figure 4(b) shows five examples of feature
variations interpretation results from ISI in the first 100 iterations. The interval between
two columns is 10 iterations. The results show that there are no specific patterns at the
beginning regarding how to classify a digit. But after more iterations, we can see that the
sketch of each digit highlighted by white areas becomes more obvious. For D CCC, LR
is selected as the shallow model ISI to explain the three interpretation aspects based on
the accuracy performance. Figure 3(c) shows the contribution of the amount of previous
payment in each month. It indicates that the amount of previous payments in April and
May strongly influence DP. Since linear model LR is selected, each feature influence is
the product of the corresponding coefficient of LR and the changes of the feature. Figure
3(d) shows the feature adaptability. It also gives reasonable explanation of each features
to the final DP [23].

Fig. 4. (a) Selected features by ISI with LASSO in MNIST dataset. The first four rows are
calculated with L1 regularization parameter λ = 0.5, 0.1, 0.05, 0.01 and 100 hidden units. The
results in the last row are calculated with λ = 0.01 and 500 hidden units. (b) Variations of feature
weights in NN learning process of five examples with λ = 0.1 and 100 hidden units.

5.3 Prediction Accuracy Evaluation

In this section, we evaluate the prediction capability of ISI in AUPRC and AUROC,
compared with other classification models as baselines cross the three different datasets.
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MNIST D CCC SD
Method AUPRC AUROC AUPRC AUROC AUPRC AUROC
LR 0.8159± 0.0113 0.9589± 0.0021 0.5954± 0.0017 0.6482± 0.0030 0.8721± 0.0109 0.9007± 0.0075
DT 0.7570± 0.0140 0.9189± 0.0019 0.5177± 0.0451 0.5321± 0.0091 0.8595± 0.0079 0.8128± 0.0109
SVM NA NA 0.5349± 0.0400 0.5661± 0.0048 0.8626± 0.0072 0.8944± 0.0072

ANN 0.9726± 0.0023 0.9946± 0.0006 0.6792± 0.0189 0.6133± 0.0049 0.8891± 0.0139 0.9119± 0.0093
CNN 0.9894± 0.0007 0.9982± 0.0001 0.6002± 0.0597 0.5010± 0.0018 0.8706± 0.0104 0.8987± 0.0104

MIMIC 0.7219± 0.0086 0.9261± 0.0029 0.5446± 0.0028 0.5790± 0.0028 0.8789± 0.0151 0.9062± 0.0123
ISI 0.8722± 0.0033 0.9710± 0.0003 0.6066± 0.0101 0.6553± 0.0083 0.8802± 0.0096 0.9082± 0.0067

Table 4. Accuracy performance on the three datasets. MIMIC learning uses SVM, LASSO,
LASSO respectively for the three datasets. ISI is embedded with LASSO, LR and LASSO for
MNIST, D CCC and SD, respectively. Here different shallow models are used for different datasets
because we choose the best NN-shallow models combination for each case. ISI outperforms all
the interpretable models. The performance of ISI is comparable to that of ANN and CNN, and
sometimes is even better.

Here MIMIC learning uses the same NN structure as ISI for fair comparison. For the
shallow part in MIMIC and ISI methods, we try difference shallow models (LR, DT,
SVM, LASSO) in each dataset and reports the best performed ones. Table 4 shows the
accuracy of ISI compared with baseline methods. “NA” here means the corresponding
method takes more than 10 times longer than the other methods.

Overall, we see the full-blown ISI improves upon all the other interpretable models
cross the three different datasets. Moreover, the performance of ISI is comparable to
that of ANN and CNN while ISI is also easier to interpret. From the first three rows of
LR, DT and SVM in Table 4, ISI improves versus the next-best alternative an average
of 3.24% in AUPRC and 1.06% in AUROC. It may contributes to ISI neural network
structure. Comparing with traditional NN, the AUROC of ISI is significantly higher
than the AUROC of ANN in D CCC dataset. Based on the row of MIMIC method,
ISI outperforms the state-of-the-art interpretable model MIMIC 10.78% on average in
AUPRC and 6.08% in AUROC. It shows by jointly training shallow models and neural
network, ISI can gain a higher accuracy. Moreover, based on the standard deviation of
each experiment, ISI is also more robust than MIMIC learning in terms of stability. This
further shows that ISI has desirable discriminative power after being incorporated into
the shallow model to enable interpretability.

6 Conclusions and Future Work

We have proposed a novel interpretable neural network framework ISI which embeds
shallow interpretable models in NN learning process, and they are jointly trained to gain
both accuracy and interpretability. Through experiments over different datasets, ISI not
only outperforms the state-of-the-art methods, but also can be reasonably explained in
three aspects: feature importance, feature impact and the adaptability of feature weights
in NN learning process. Notice here ISI is mainly applied in areas where interpretability
is necessary and traditional models are still widely used [6, 22], such as political and
economics area. For the future work, how to choose proper interpretable shallow models
and applying ISI to more complex data and other neural network architectures are
promising directions for future explorations.
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