
On Interpretation of Network Embedding
via Taxonomy Induction

Ninghao Liu,† Xiao Huang,† Jundong Li,‡ Xia Hu†
†Department of Computer Science and Engineering, Texas A&M University

‡Computer Science and Engineering, Arizona State University
{nhliu43,xhuang,xiahu}@tamu.edu,jundongl@asu.edu

ABSTRACT
Network embedding has been increasingly used in many network
analytics applications to generate low-dimensional vector represen-
tations, so that many off-the-shelf models can be applied to solve a
wide variety of data mining tasks. However, similar to many other
machine learning methods, network embedding results remain
hard to be understood by users. Each dimension in the embedding
space usually does not have any specific meaning, thus it is diffi-
cult to comprehend how the embedding instances are distributed
in the reconstructed space. In addition, heterogeneous content in-
formation may be incorporated into network embedding, so it is
challenging to specify which source of information is effective in
generating the embedding results. In this paper, we investigate the
interpretation of network embedding, aiming to understand how
instances are distributed in embedding space, as well as explore the
factors that lead to the embedding results. We resort to the post-
hoc interpretation scheme, so that our approach can be applied to
different types of embedding methods. Specifically, the interpreta-
tion of network embedding is presented in the form of a taxonomy.
Effective objectives and corresponding algorithms are developed
towards building the taxonomy. We also design several metrics to
evaluate interpretation results. Experiments on real-world datasets
from different domains demonstrate that, by comparing with the
state-of-the-art alternatives, our approach produces effective and
meaningful interpretation to embedding results.

KEYWORDS
Machine Learning Interpretation, Network Embedding, Taxonomy
ACM Reference Format:
Ninghao Liu,† Xiao Huang,† Jundong Li,‡ Xia Hu†. 2018. On Interpretation
of Network Embedding via Taxonomy Induction. In KDD ’18: The 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
August 19–23, 2018, London, United Kingdom. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3219819.3220001

1 INTRODUCTION
Network embedding has been increasingly applied to learn the
representation of network data before using off-the-shelf machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220001

learning models to conduct advanced analytic tasks such as clas-
sification [22, 52], clustering [12, 57], link prediction [55] and rec-
ommendation [4, 23]. Network embedding projects nodes to a low-
dimensional space in which each node is represented by a vector.
Network embedding preserves certain structural and content infor-
mation of original networks. Nodes that are similar to each other,
with respect to the pre-defined proximity measures, are mapped to
the neighboring regions in the embedding space.

Similar to many traditional machine learning techniques, net-
work embedding also suffers from the problem of lacking inter-
pretability. Usually each dimension in the embedding space does
not have any specific meaning. Also, although network embedding
can generate effective feature representation, we lack an overall
comprehension of how embeddings distribute in the new space, due
to the obscurity of the applied network embedding models. Inter-
pretability plays a crucial role inmany application scenarios. On one
hand, as heterogeneous information sources such as links [46, 52],
attributes [25, 58], labels [26, 29, 56] and local structures [11, 22, 52]
are incorporated into network embedding algorithms in comput-
ing the similarity between nodes, interpretation approaches can
provide clues about which information is important in producing
the outcome, and whether it is in accordance with the applica-
tion [47]. On the other hand, the “black box” nature of a model may
impede users from trusting the generated analytical results [37].
For example, many recommender systems map users and products
into embedding spaces, followed by some matching algorithms to
recommend products to users. Users may better trust the recom-
mendation results if the underlying reasons could be specified [8].
Thus we propose to investigate the important problem of enabling
interpretation in network embedding.

Understanding network embedding is a nontrivial task due to
unique properties of the problem and characteristics of the network
data. First, we cannot directly apply existing interpretation methods
designed for prediction models [5, 20, 47]. These methods require
class labels of instances, which are however not available from
embedding results. Second, many real-world networks are of large
volume, contain diverse information and tend to be noisy. These
data characteristics require the interpretation schema to effectively
utilize various information sources and process them efficiently.
Third, although visualization techniques can be applied to under-
stand network embedding results [21, 41, 50], it is not intuitive for
users with limited data science background to manually discover
complex patterns from visualization. Some information even cannot
be rendered merely through visualization.

To tackle the aforementioned challenges, in this paper, we pro-
pose a novel interpretation framework for understanding network

https://doi.org/10.1145/3219819.3220001
https://doi.org/10.1145/3219819.3220001

embedding. The approach is post-hoc, i.e., we focus on interpret-
ing the given network embedding result, so that it is applicable
to different types network embedding methods. Unlike many ex-
isting frameworks that provide local interpretation to individual
instances [3, 47], our method focuses on capturing the global char-
acteristics of embedding result. Our interpretation of network em-
bedding is presented in the form of a taxonomy. We first extract the
backbone of the taxonomy to know how instances are distributed
in the embedding space, and then provide descriptions to different
concepts in the taxonomy by utilizing the property of network
homophily. Proper data structures and algorithms are presented to
improve the efficiency of the approach. The resultant interpretation,
together with visualization tools, could provide richer information
to end users. The major contributions of this paper are as follows:
• We design a model-agnostic interpretation framework to under-
stand network embedding result through taxonomy induction.
• We propose clear objectives in each step of the taxonomy induc-
tion, and develop effective algorithms towards the objectives.
• We design newmetrics for evaluating interpretation accuracy. Ex-
periments on real-world networks are conducted to demonstrate
the effectiveness of the proposed approach.

2 PROBLEM FORMULATION
2.1 Notations
We use boldface uppercase alphabets (e.g., A) to denote matrices,
boldface lowercase alphabets (e.g., z) as vectors, calligraphic alpha-
bets (e.g., T) as sets, and normal characters (e.g., i ,K) as scalars. The
size of a set T is denoted as |T |. The i-th row, j-th column and (i, j)
entry of matrix A are denoted as Ai, :, A:, j and Ai, j , respectively.
LetN = {V, E,X} be the input network, whereV denotes the set
of nodes, E denotes the edge set, and X ∈ RN×M denotes the at-
tribute matrix. Specifically, the network hasN nodes, and each node
is associated withM attributes. Some examples of node attributes
include biographical information of users in social networks, and
reviews of products in co-purchase networks. The output of net-
work embedding is the representation matrix Z ∈ RN×D , where
Zi, : ∈ RD denotes the embedding instance of the i-th node. In this
paper, we assume there is only one type of nodes and relations
in the network, but the work can be extended to heterogeneous
networks with various types of nodes and relations.

2.2 Objectives of Network Embedding
In order to provide directions in designing an appropriate inter-
pretation method, we first elaborate the commonalities of different
network embedding approaches. Specifically, a vast majority of
existing network embedding approaches can be reduced to solving
the following optimization problem:

min
Z

Lemb = Lapp (N ,Z) + α0Lr eд(Z),

where Lapp (N ,Z) =
∑

i, j ∈V

l(sN(i, j), sZ(i, j)).
(1)

Here Lemb , Lapp and Lr eд denote the overall loss function, ap-
proximation loss function and regularization terms, respectively.
α0 is a balancing parameter. sN(i, j) and sZ(i, j) represent the simi-
larity measure between node i and j in the original network and

Clothes

Women Men Children …

Suits Casual …Classics Modern … Jeans Coats …

Figure 1: A toy example of taxonomy for “clothes".

embedding space, respectively. l is the element-level loss func-
tion measuring the disparity between sN(i, j) and sZ(i, j). Exam-
ples of sZ(i, j) include logistic error [52], square error [55] and
inner product [56]. sN(i, j) can be measured based on neighbor-
hoods [11, 52], node attributes [25] and labels [29, 56]. For example,
in [52], the objective function considering the first-order proximity
is−

∑
(i, j)∈E wi, j logp(i, j), wherewi, j is the edge weight andp(i, j)

is the probability between node i and j. Here sN(i, j) and sZ(i, j)
correspond towi, j and p(i, j), and l is the KL-divergence. The simi-
larity between nodes in the original network are thus encoded into
the proximity between embedding instances. From the analysis
above, we are interested in two aspects for understanding network
embedding results: how do the embedding instances distribute in
the latent space (i.e., which nodes are mutually adjacent or sepa-
rated in the latent space), and what are the possible factors leading
to the embedding distribution?

2.3 Taxonomy Induction as Interpretation
We consider several elements when designing the interpretation
schema. First, as different methods adopt different strategies for
embedding representation learning, we leverage the post-hoc strat-
egy [37] and attempt to extract explanation information from the ob-
tained embedding results. Second, we focus on explaining the over-
all embedding results rather than providing local explanations for
each individual node, due to the existence of autocorrelations [32]
among connected nodes. Third, as community structures are natu-
rally observed in real-world networks, it motivates us to explain
the embedding results based on communities.

Considering the factors above, in this paper, we tackle the prob-
lem of explaining network embedding via taxonomy induction. A
taxonomy is a structured organization of knowledge to facilitate
the information searching. An example of taxonomy is shown in
Figure 1, where different classes are organized in a hierarchical
structure, and classes of coarse granularity are gradually split into
refined ones. Following the existing work on taxonomy construc-
tion [10, 40, 44], we map the terminology in network analysis to
taxonomy induction. We define the “domain" in a taxonomy as the
whole data at hand, including network N and its embedding Z.
The attributes X and edges E in networks are regarded as “terms"
as they describe the properties of nodes. The backbone of a tax-
onomy is usually a hierarchy of “concepts", which correspond to
clusters implicitly contained in Z. The embedding vectors of all
nodes are divided into smaller clusters in an iterative manner. The
“hypernym" relation in a hierarchy is modeled by the directed link
between a parent cluster and child cluster. In this way, we distill
the implicit relations and patterns concealed in embeddings into
explicit organizations of knowledge.

Taxonomy induction tackles the two aspects of problems pro-
posed in Section 2.2. The cluster hierarchy in the taxonomy can
unveil how embedding instances distribute in the latent space, while

summarizing the characteristics of each cluster discovers the fac-
tors that lead to such distribution. In this paper, in particular, we
refer to the former aspect as the global-view interpretation, and
the latter aspect as the local-view interpretation.

3 GLOBAL-VIEW INTERPRETATION
The goal of this section is to extract the backbone of the taxonomy
based on the embedding instances. Concretely, the backbone is
represented as a hierarchy of clusters in the embedding space. In
this way, we can gain more insights about how nodes distribute in
the embedding space, and gradually unveil the structural patterns
among nodes in the embedded space.

3.1 Embedding-based Graph Construction and
Clustering

Given the embedding result Z, we first build a graph G, whose
affinitymatrix is denoted asAG , to store the node-to-node similarity
in the embedded space. The edge weight between each pair of nodes
is defined as:

AG
i, j = exp(−∥Zi, : − Zj, :∥22/2σ

2). (2)

Since computing and storing weights for all pairs of nodes could
be extremely expensive when the number of nodes is large, here
we only maintain a sparse affinity matrix defined as follows:

Ai, j =

{
AG
i, j , if j ∈ Neighbors(i) or i ∈ Neighbors(j)

0, otherwise
, (3)

where the number of neighbors is |Neighbors(·)| = b ⌈log2 N ⌉ ac-
cording to [54], and b is a constant integer. The resultant affinity
matrixA is symmetric. The cluster structure of embedding instances
is obtained by solving the problem below:

min
W≥0

∥A −WWT ∥2F , (4)

whereW ∈ RN×C , C is the number of clusters and ∥ · ∥F denotes
Frobenius norm. The above formulation is equivalent to performing
kernel K-means clustering on Z with the orthogonality constraint
WTW = I relaxed [18]. A larger value ofWi,c indicates a stronger
affiliation of the node i to cluster c .

It is a nontrivial problem to solve Equation 4, since the objec-
tive function is a fourth-order function which is non-convex with
respect toW, so we reformulate the problem as below:

min
W,H≥0

∥A −WHT ∥2F + α ∥W −H∥
2
F , (5)

where α > 0 controls the tradeoff between approximation error
and factor matrices difference. Traditional iterative optimization
methods such as coordinate descent methods [24, 36] can be applied
to solve the problem by updatingW andH alternatively. The value
of α is gradually increased to reduce the difference betweenW and
H as iterations proceed until convergence.

3.2 Hierarchy Establishment from
Embedding-based Graph

Rather than performing conventional flat clustering onG , we lever-
age the hierarchical strategy to resolve the graph recursively. The
reasons are two-fold. First, it is hard to know the optimal number of

Algorithm 1: Taxonomy Backbone Extraction from G

Input: Affinity matrix A of G , maximum number of clusters C ,
parameters α ∈ R+, γ ∈ (0, 1), I ∈ N+

Output: Tree-structured hierarchy T
1 Create a root clusterM1 = V containing all graph nodes, and let

the partition score s(M1) ← 0 (Note: 0 ≤ s(·) ≤ 1)
2 Number of leaf node c ← 1, time step t ← 1
3 while c ≤ C do
4 Choose a clusterMt of the smallest s(Mt) to be partitioned
5 Outliers Ot = ∅
6 for i = 1 : I do
7 Obtain the submatrix At corresponding toMt

8 Run rank-K NMF on At , and create K potential clusters
{Mt

k ;k ∈ [1, K]} based on Wt (or Ht)
9 if |Mt

k | < γ |Mt | && s(Mt
k) is the largest among all leaf

clusters, ∃k ∈ [1, K], then
10 Mt ← Mt − Mt

k , O
t ← Ot ∪ Mt

k

11 else
12 break

13 if i ≤ I then
14 PartitionMt as {Mt

k ;k ∈ [1, K]}, and compute s(Mt
k)

15 else
16 Mt ← Mt ∪ Ot , s(Mt) ← 1

17 c ← c + K , t ← t + 1

clusters inG . By adopting hierarchical clustering, we avoid starting
over and exhaustively trying differentK values, which is often time-
consuming. Second, multilevel abstraction of concepts naturally
exists in many real-world networks, such as product catalogues in
e-commerce networks, and topic hierarchies in document networks.
In addition, practitioners can trim the obtained hierarchical struc-
ture based on their own needs, which is helpful in interpretation
where the interactions exist between users and models.

We adapt the previously mentioned NMF algorithm for clus-
tering G in a hierarchical manner, as summarized in Algorithm 1.
After initialization (line 1∼2), we repeatedly split large clusters into
smaller ones. An example can be found in Figure 2. The details of
the hierarchical clustering process are introduced as follows:
• Partition Score (line 4): At each step t , we need to choose the
“best" cluster to be partitioned. A cluster is suitable for further
partitions if it contains several smaller cluster components which
are densely intra-connected and loosely inter-connected. We use
the normalized cut (ncut) [49] as the partition score s(·):

s(Mt) = ncut({Mt
k ;k ∈ [1,K]}) =

K∑
k=1

cut(Mt
k ,V −M

t
k)

assoc(Mt
k ,V)

, (6)

where cut(M1,M2) =
∑
i ∈M1, j ∈M2 Ai, j and assoc(M,V) =∑

i ∈M, j ∈V Ai, j . In this way, if each sub-clusterMt
k is well iso-

lated from other nodes, then cut(Mt
k ,V−M

t
k)will be small. Be-

sides, if the nodes withinMt
k are well connected, then assoc(Mt

k ,

V) is large, since assoc(Mt
k ,V) = assoc(Mt

k ,M
t
k) + cut(M

t
k ,

V −Mt
k). Therefore, the cluster with smallest partition score s

is assigned with top priority to be further split.
• Rank-K NMF (line 7∼8, 14): Let At ∈ Rn×n denote the affinity
matrix of clusterMt which is selected to be further partitioned

Parent 0 1 2 6 7 9

Childl 1 5 3 7 9 11

Childr 2 6 4 8 10 12

0

1 2

5 6 3 4

7 8

9 10

11 12

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: A taxonomy extracted by hierarchical clustering on embeddings from node2vec [22] on the Les-Misérables network.
(a): Visualization of original embedding results. (b): Visualization of embeddings after clustering where C = 7. (c): Taxonomy
represented in a table, where bold numbers denote leaves. (d): Taxomony represented by a tree. (e): Visualization of the network
with 4 clusters obtained from a subtree. (f): Visualization of the network with 7 clusters obtained from the taxonomy, which
corresponds to the embedding visualization in figure (b).

at step t . The size ofMt is n. We fix the number of sub-clusters as
K , so each partition step is transformed into a local rank-K NMF
problem: minWt ,Ht ≥0 ∥At −WtHtT ∥2F + α ∥W

t − Ht ∥2F . For
generality, in this work we set K = 2 if no other prior knowledge
is available. After initializing Ht and α , the NMF problem is
solved in an iterative manner until convergence [31]:

Wt ← Ht , α ← cscale · α

Ht ← argmin
Ht ∈Rn×K

≥0

[At
√
αWtT

]
−

[
Wt
√
αIK

]
HtT

2
F

, (7)

where cscale is slightly larger than 1, so that α keeps increas-
ing throughout iterations to force Ht and Wt to be gradually
close to each other. Here IK is the K × K identity matrix. Af-
ter convergence, we assign each node i to the new sub-cluster
ki = argmaxk Wi,k . In the taxonomy tree T , the new K sub-
clusters are appended as the children ofMt .
• Outliers Identification (line 9∼12, 16): Outliers adversely af-
fect the clustering quality as they are likely to be separated as
sub-clusters but usually do not contain patterns of interest. We
treat a sub-clusterMt

k as outliers if it is of extremely small size
compared with its parent (i.e., |Mt

k | < γ |Mt | and 0 < γ < 1)
and has high partition scores (low priority). We keep excluding
outliers for at most I rounds, so thatMt will not be partitioned
if its main components are outliers (i.e., i ≤ I does not hold).

4 LOCAL-VIEW INTERPRETATION
In the previous section, we discussed how to obtain the backbone
of taxonomy through hierarchical clustering. In this section, we
concentrate on each cluster in the taxonomy to summarize its
unique characteristics or properties.

Specifically, we utilize node attributes to delineate the properties
of clusters. Typical examples of node attributes include the user
profile information in social networks, reviews of products in e-
commercial networks, and research areas of scholars in academic

M 1: {x1, x2, x3, x4}

M 3: {x2, x4} M 2 : {x1, x3}

M 5 : {x3}M 4 : {x1}

U1,:

U2,:

U3,:

U4,:

U5,:

Clusters

. . .

Figure 3: Left: Groups of important attributes associated
with each cluster in a subtree of the taxonomy. Right: Cor-
responding activated entries in the weight matrix U.

networks. The reasons are twofold for using node attributes to
delineate the properties of clusters in the embedded space. First,
many network embedding algorithms already incorporate attribute
information to learn informative embedding representations [25,
26, 29, 56, 58]. In this case, our goal is to find the significant con-
tents that lead to the embedding results. Second, according to the
principle of network homophily [42], nodes with similar attributes
are more likely to be linked with each other. Hence, even though
an embedding algorithm does not explicitly leverage node attribute
information, we can still use it to derive a palpable understanding
of the obtained clusters.

We tackle the problem of characterizing clusters as a multitask
feature selection problem. Here the “feature" refers to the node
attributes. Each cluster is then characterized by the important at-
tributes shared by the majority of nodes in the cluster. The cluster
structure identified by the global-view interpretation provides the
discriminative information which supports feature selection to be
implemented in a supervised manner. Concretely, let Y ∈ RN×C
denote the class label matrix, where Yn,t = 1 if node n belongs to
clusterMt and Yn,t = 0 otherwise. Here C is the number of tasks.
If we want to describe all clusters in the taxonomy, then C equals
to the total number of internal nodes and leaf nodes in the tree T .
Let U ∈ RM×C denote the attribute weight matrix, where Um,t
indicates the importance of attributem in clusterMt . For a pair

Algorithm 2: Optimization algorithm for Equation 11.
Input: Affinity matrix A of G , attribute matrix X, hierarchical

clusters T , λ ∈ R+.
Output:Weight matrix U, coefficients {дm,τ }.

1 Initialize U and {дm,τ }

2 while not converged do
3 for t = 1, 2, ..., C do
4 Collect samples {(i, j) |i, j ∈ Mt }, and negative samples

{(i−, j−)} from other clusters
5 Update U:,t using mini-batch stochastic gradient descent

6 Update дm,τ =
lτ ∥Uτm ∥2∑

m
∑
τ ∈T lτ ∥Uτm ∥2

of nodes i , j within a certain clusterMt , the consistency of node
similarity in the embedding space and that in the selected feature
space can be quantified as below:

σ (i, j) =
1

1 + exp(−Ai, jxiTdiaд(U:,t)xj)
, (8)

where diaд(U:,t) turns the column vector U:,t into the diagonal
matrix form. xiTdiaд(U:,t)xj is the similarity between attributes
of i and j weighted by U:,t , while Ai, j is the edge strength between
instance i and j in graphG . Then the objective function with respect
to U is given as follows:

max
U

C∑
t=1

(∑
i, j ∈Mt

log(σ (i, j)) +
∑
i−, j−

log(1 − σ (i−, j−))
)
. (9)

The samples i− and j− are negative samples from other clusters. By
optimizing the above objective function, we obtain U that selects a
subset of important attributes for each clusterMt such that node
proximity in the selected feature space are in line with the proximity
in the embedding space.

To take advantage of the hierarchical structures contained in
the taxonomy, some constraints are required to regularize U:,t . Let
P = (t0, t1, t2, ..., th) denote the path from the root to a leaf in
the taxonomy tree T , where ti refers to a tree node and ti−1 is
the parent of ti . Two clustersMti andMtj are expected to share
some common characteristics if ti and tj lie on the same path P.
An example is shown in Figure 3. ForM5, its important attribute
is x3, while x3 is also one of the important attributes ofM2 and
M1 as they are in the same root-to-leaf path. To incorporate the
prior knowledge of tree-based structure in taxonomy, we intro-
duce tree-based group lasso regularization [28] to the objective
function. Therefore, the overall objective function for local-view
interpretation is formulated as:

max
U

C∑
t=1

(∑
i, j ∈Mt

log(σ (i, j)) +
∑
i−, j−

log(1 − σ (i−, j−))
)

− λ
∑
m

∑
τ ∈T

lτ ∥Uτ
m ∥2.

(10)

For the regularization term, Uτ
m is a vector of weight coefficients

{Um,t : t ∈ τ }, where τ refers to a tree node in taxonomy T . Here
t ∈ τ if the clusterMt is part ofMτ . This also implies that if t ∈ τ ,
then t ∈ parent(τ). Considering the tree structure, one way for
selecting negative samples i− and j−, w.r.t. i, j ∈ Mt , is to sample
from clusters that are not in the same path asMt .

Dataset N M |E | #class
BlogCatalog 5,196 50 343,486 6

Flickr 7,575 60 479,476 9
20NewsGroups 18,774 60 401,108 [6, 20]

Table 1: Statistics of the datasets.

The above optimization problem is non-smooth due to the exis-
tence of L1/L2-norm regularization term and is hence difficult to
optimize. Therefore, we use an alternative formulation previously
introduced for group lasso [2]:

max
U

C∑
t=1

(∑
i, j ∈Mt

log(σ (i, j)) +
∑
i−, j−

log(1 − σ (i−, j−))
)

− λ
∑
m

∑
τ ∈T

l2τ ∥Uτ
m ∥

2
2

дm,τ

subject to
∑
m

∑
τ ∈T

дm,τ = 1, дm,τ ≥ 0,

(11)

where additional variables {дm,τ } are introduced. The way of set-
ting lτ is suggested in [28]. The problem above is then solved by
alternatively optimizing U and дm,τ , as shown in Algorithm 2. In
each iteration, we first hold coefficients дm,τ as constant and up-
date each column U:,t using stochastic gradient descent. Then we
fixU and update дm,τ , where the update equation is given in Line 6
of Algorithm 2.

5 EXPERIMENTS
We evaluate the effectiveness of the proposed interpretation frame-
work quantitatively on real-world datasets. A case study is also
implemented to intuitively show the interpretation results.

5.1 Experimental Settings
Datasets We use three real-world datasets to evaluate the inter-
pretation results. The detailed statistics of theses datasets are in
Table 1. The detailed descriptions of these datasets are as follows.
• BlogCatalog1: An online community network from which links
between users and posts of users are extracted. Users are rep-
resented as nodes, and their associated posts are used as node
attributes. Predefined class labels of users are also available.
• Flickr1: An image and video hosting website. The following
relationships among users form a network, in which the tags of
interest are used as node attributes. The groups that users joined
are treated as class labels.
• 20NewsGroups2: A collection of news documents, each ofwhich
belongs to one of the twenty different topics. The topics are used
as class labels, and a topic hierarchy is directly available from the
data source. We use a tf-idf vector to represent each document
and measure the similarities among documents using cosine sim-
ilarity. A network is constructed based on document similarities,
and news texts are attached as attributes. The attributes are only
used in interpretation, while for network embedding only link
information is considered.

1http://people.tamu.edu/∼xhuang/Code.html
2http://qwone.com/∼jason/20Newsgroups/

5 10 15 200

0.2

0.4

k

N
M
I

20NewsGroup Level1

Prop SymNMF
HierKm Random

5 10 15 200

0.2

0.4

k

N
M
I

20NewsGroup Level2

Prop SymNMF
HierKm Random

Figure 4: Hierarchical Clustering for LINE on 20NewsGroup.

5 10 15 200

0.1

0.2

0.3

k

N
M
I

20NewsGroup Level1

Prop SymNMF

HierKm Random

5 10 15 200

0.1

0.2

0.3

0.4

k

N
M
I

20NewsGroup Level2

Prop SymNMF

HierKm Random

Figure 5: Hierarchical Clustering for node2vec on 20NewsGroup.

For all of the datasets above, we preprocess the attributes (i.e., word
tokens) using LDA [7] to reduce the number of dimensions.
AlternativeMethods forGlobal-View Interpretation. To eval-
uate whether the extracted hierarchical clusters by our approach
are reasonable, we introduce two alternative clustering methods for
comparative analysis. The goal is not to defeat these alternatives,
since the proposed method can be seen as a variant of them.
• SymNMF [31]: A flat graph partitioning algorithm based on
NMF. It has the same overall loss function as our method. The
input is also the graph G constructed from embedding results.
• HierKm [30]: A hierarchical clustering method based on the
k-means algorithm. Its workflow is the same as Algorithm 1. It
operates directly on embedding instances.

Baseline Methods. We further verify if the description of each
cluster, selected from node attributes, correctly reflects its charac-
teristics. The baseline methods are introduced as below.
• MTGL [28]: A multitask classification model also guided by tree-
based group lasso. It shares the same global-view interpretation
result as the proposed method.
• NDFS [35]: An unsupervised feature selection algorithm. We
use the graph Laplacian built from embedding vectors and the
attribute information of nodes as the input.
• LIME [47]: A model originally designed for interpreting indi-
vidual instances in classifiers. In our experiments, we select a
number of target embedding instances. For each instance, we
select important attributes of its neighborhood compared with
some other distant clusters for local interpretation.

5.2 Evaluation on Global-View Interpretation
5.2.1 Evaluation Metric for Global-View Interpretation. The eval-

uation of global-view interpretation follows the common workflow
of clustering evaluation. In particular, we use Normalized Mutual
Information (NMI) [16] to measure the hierarchical clustering qual-
ity with respect to the ground-truth clusters. For a dataset with
defined hierarchy, at each level, we compute the NMI between the
clustering results and the ground-truth clusters at that level.

2 4 6 8 100

0.2

0.4

k

N
M
I

BlogCatalog

Prop SymNMF

HierKm Random

2 4 6 80

0.2

0.4

0.6

0.8

k

N
M
I

Flickr

Prop SymNMF

HierKm Random

Figure 6: Global Interpretation for LANE on BlogCatalog and Flickr.

2 4 6 8 100

0.2

0.4

0.6

k

N
M
I

BlogCatalog

Prop SymNMF
HierKm Random

2 4 6 8 10

0.4

0.6

0.8

1

k

N
M
I

Flickr

Prop SymNMF
HierKm Random

Figure 7: Global Interpretation for LCMF onBlogCatalog and Flickr.

5.2.2 Employed Network Embedding Methods. We introduce the
employed network mebedding methods to be interpreted. Note that
global-view interpretation takes the network embedding results
as input rather than the original network. Therefore, to guaran-
tee that ground-truth cluster labels of nodes can still be used on
the embedding representations of nodes, we include the following
embedding methods which: (1) preserve the first-order or high-
order node proximity (e.g., LINE [52], SDNE [55], node2vec [22]);
(2) incorporate labels with links and attributes (e.g., LCMF [58],
LANE [26]). In particular, LINE, node2vec and SDNE are used to
embed the 20NewsGroup network, while LANE and LCMF are
performed on BlogCatalog and Flickr networks. For LINE, we set
the number of negative samples as 10, the number of samples as
200 millions, ρ = 0.025, and enable second-order proximity. For
node2vec, we set p = 1, q = 0.5, walk length as 80 and the number
of walk per node as 15. For SDNE, there are two encoding layers
with 600 and 128 latent factors, respectively. For LANE, we set the
balancing parameter of labels as 300 for BlogCatalog and 150 for
Flickr. For LCMF, we set the balancing parameter of attributes as 3
for BlogCatalog data and 5 for Flickr data. The notations above are
borrowed from the corresponding reference papers.

5.2.3 Global-View Interpretation Results and Analysis. The global-
view interpretation results are shown in Figures 4∼7. We omit the
results for SDNE on 20NewsGroup owing to lack of space, as they
are similar to those for node2vec. Some observations are made as
follows. First, in general, the proposed method and SymNMF have
more stable clustering performances than HierKm, and even better
performances in some cases. It means that, although we work on
the embedding-based graph instead of directly on the embedding
instances, the clustering results are not significantly affected. In
certain cases, we even benefit from clustering on embedding-based
graphs. Second, the proposed method is comparable to SymNMF as
k increases, as they actually share the same original loss function
in Equation 4. The proposed method has better performance when
k is small. This is probably because a small k is largely inconsistent
with the real number of clusters in the datasets, which hinders the

0 0.1 0.2 0.30.2

0.3

0.4

0.5

0.6

d

sh
ift

BlogCatalog

Prop MTGL
LIME NDFS

0 0.1 0.2 0.30.1

0.15

0.2

0.25

0.3

d

sh
ift

Flickr

Prop MTGL
LIME NDFS

Figure 8: Local Interpretation for LANE on BlogCatalog and Flickr.

0 0.2 0.4 0.6 0.80.2

0.3

0.4

0.5

0.6

d

sh
ift

BlogCatalog

Prop MTGL
LIME NDFS

0 0.2 0.4 0.6 0.80.1

0.2

0.3

0.4

0.5

d

sh
ift

Flickr

Prop MTGL
LIME NDFS

Figure 9: Local Interpretation for LCMF on BlogCatalog and Flickr.

performance of flat clustering. In this case, hierarchically clustering
can more effectively discover the internal structures of the data. In
conclusion, the observations above validate the soundness of the
developed global-view interpretation method.

5.3 Evaluation on Local-View Interpretation
The goal of local-view interpretation is to identify the attributes
shared by the nodes in the same cluster obtained from the global-
view interpretation. We design two sets of experiments to verify
the correctness of the identified attributes, through adversarial
perturbation and network reconstruction, respectively.

5.3.1 Adversarial Perturbation Based on Interpretation. As it is
difficult to obtain the ground truth information (e.g., significant at-
tributes), we first evaluate the accuracy of generated interpretation
through adversarial perturbation. After identifying the significant
attributes of nodes, we select a number of seed nodes for generating
adversarial samples. We create a copy for each of the seeds, distort
the value of their attributes and fed the new nodes along with the
original network into the embedding algorithms. After that, we
measure the relative shift of the new embeddings from the original
embeddings of seeds. Let zn and z′n be the embedding instance
of node n before and after perturbation, respectively, the shift is
defined as:

shi f t(n,d) =
|Neighbors(zn) ∩ Neighbors(z′n)|

|Neighbors(zn)|
, (12)

where Neighbors(zn) denotes the set of neighbor nodes around
n in the embedding space, and d is the amplitude of adversarial
perturbation. Large shift is expected if the generated interpretation
faithfully reflects the mechanism of employed embedding models.

Specifically, the number of seeds is set as 0.03 × N for each
network, where N is the total number of nodes. For each seed’s
embedding vector, the number of neighbors is chosen as 0.01 × N
for LANE and 0.03×N for LCMF. The parameters settings of LANE
and LCMF remain the same as in the previous experiments. For
LCMF, since it outputs several matrices besides the embedding
matrix Z, we fix the values of these matrices and only allow Z to

0 2 4

·104

0.2

0.4

0.6

0.8

1

k

pr
ec
is
io
n@

k

LINE

Prop
MTGL
NDFS

0 2 4

·104

0.2

0.4

0.6

0.8

1

k

pr
ec
is
io
n@

k

node2vec

Prop
MTGL
NDFS

0 2 4

·104

0.2

0.4

0.6

0.8

1

k

pr
ec
is
io
n@

k

SDNE

Prop
MTGL
NDFS

Figure 10: Network Reconstruction on 20NewsGroup Dataset.

be updated during learning process. For each seed node in cluster
Mt , we identify 4 positively significant attributes and 4 negatively
significant ones to be perturbed, corresponding to the largest and
smallest entries in U:,t , respectively. The value of the former ones
are decreased, while the value of latter ones are increased. The L2
norms of both types of perturbation are normalized to d .

The experiments are conducted on BlogCatalog and Flickr. The
performance of adversarial perturbation is shown in Figure 8 for
LANE and Figure 9 for LCMF. The figures show that the average
shift of adversarial samples increases as we increase the perturba-
tion amplitude. The adversarial samples created by the proposed
method are more effective, as they are more dramatically shifted
from their original neighborhood prior to adversarial perturbation.
The proposed method has better performance than MTGL. The
reason could be that the edge weights contained in A are more
informative than binary class labels used in MTGL. In addition, in-
terpretation approaches (e.g., Prop, MGTL), which focus on overall
embedding instances, have better performances than LIME which
interprets individual embeddings locally. It indicates the importance
of considering a wider range of contexts in solving our problem.
The embedding instances in other clusters provide contrastive infor-
mation to filter out irrelevant attributes with respect to the current
cluster, while instances within the same cluster help filter out noises
in attribute selection.

5.3.2 Network Reconstruction from Interpretation. In this sub-
section, we evaluate interpretation results with respect to their
capability of network reconstruction. The motivation for this ex-
periment is that, while network embedding methods encode topo-
logical structures into embeddings, interpretation algorithms try
to recover the attribute patterns consistent with the embedding
distribution. We use the 20NewsGroup network, in which the links
between documents (nodes) are established based on their content
similarity. We build an LDA model with 60 latent topics from the
documents, and assign each node with a 60-dimensional attribute
vector. After solving U, in each leaf clusterMt , we predict links
based on the similarities between nodes with respect to attributes,
the importance of which is weighted by U:,t . The predicted links
correspond to node pairs with large similarity scores. The existing
links in the original network serve as the ground-truth. LIME is not
considered in this experiment since it interprets embedding vectors
locally. We use precision@k as the evaluation metric.

The results are presented in Figure 10. In general, the proposed
method achieves better performance than baseline methods. Its in-
terpretation performances are relatively stable across different net-
work embedding methods. The edge weights in A contain more in-
formation than class labels, which could explain why the proposed
method performs better than MTGL. The advantages of NDFS are

god, jesus, children, christian,
bible ……

university, government, state, game, uk,
team, gun, medical, canada, division,
washington, rights ……

talk.politics.mideast: government,
state, american, war, rights, law,
police, security, guns, isreali, clinton

sci.crypt: information, data, phone,
clipper technology, access, keys,
internet

talk.politics.guns: arms, war, administration,
law, police, guns, isreali, clinton, military

M 6

M 12
M 11

Figure 11: The inducted taxonomy with 7 leaf clusters.

rec.sport.hockey: “game, team,
player” + names of cities and
universities

talk.politics.misc : “government, state, gun,
people, rights, american, war, uk, law, police,
israeli, clinton, country, washington, canada”

rec.sport.baseball: “university,
game, team, medical, division,
canada, series”

soc.religion.Christian: “god, jesus,
children, christian , bible,
president, church, christ”M 13

M 17

M 36

M 29

Figure 12: The inducted taxonomy with 20 leaf clusters.

not reflected via this experiment. The reason is that the attributes
information are already modeled as links and fed into network em-
bedding methods, so jointly considering embeddings and attributes
does not bring additional benefits.

5.4 Case Study
We conduct a case study on 20NewsGroups network using LINE [52]
to show the taxonomy induction result and the characteristics of
extracted taxonomy concept (i.e., clusters). We present the inducted
taxonomy with 7 leaf clusters and 20 leaf clusters in Figure 11 and
Figure 12, denoted by T 7 and T 20, respectively. The two figures
are generated from the same taxonomy, but with different depths of
division. Some clusters in T 20 are obtained by splitting the larger
clusters in T 7. Clusters are indicated with different colors. The
visualization of embedding vectors are obtained using t-SNE [41].
We select several clusters and present the keywords of the docu-
ments in each cluster in the dashed boxes. For each clusterMt , we
first find its significant attributesm corresponding to the large pos-
itive entries Um,t , and then identify the keywords associated with
each attributem. As introduced earlier, here the “attributes" are the
latent factors extracted by LDA. Keywords of larger font size in
boxes are ranked higher than those of smaller font size. Keywords
that belong to the stop words or artifacts in email streams (e.g.,
com, edu) are not shown. The bold text prior to the keywords, if
available, represent the manually-identified news topic (named by
the dataset provider) which the majority of the nodes in the cluster
belong to. There are 20 such topics in the dataset.

We make the following observations from Figure 11 and Fig-
ure 12. First, nodes in each cluster extracted by our interpretation
method locate closely to each other. In general, the cluster struc-
tures are consistent with the visualization results, which reflects

the effectiveness of the global-view interpretation method. Second,
the keywords of each cluster are consistent with the ground truth
news topics, which validates the effectiveness of the local-view
interpretation. Third, we can observe that some major clusters,
such asM6 andM11, contain multiple topics, since they have not
been throughly decomposed in shallow levels of the taxonomy.
Different topics are disentangled as we continue splitting clusters
towards deeper levels. For example, many topics are mixed inM6

which is one of the major clusters in T 7. However, as we split
M6 intoM13,M17,M29 andM36, each sub-cluster has a coher-
ent topic. Some keywords in these sub-clusters are inherited from
M6, such as the {god, jesus} inM36, {game, team} inM29 and
{government, gun} inM13, so that a larger and coarser concept is
split into smaller but refined ones.

6 RELATEDWORK
Network embedding is attractingmore andmore attentions recently
for its effectiveness in generating informative node representations.
Network embedding methods can be divided into several categories
according to the types of information that is preserved [17]. First,
some approaches encode topological structures into embedding
vectors, such as various orders of proximity [29, 46, 48, 52, 55],
transitivity [45], community structures [56] and the structural roles
of nodes [22]. Here first-order proximity usually refers to the di-
rectly links between nodes, and high-order proximity means node
neighborhoods of various ranges. Second, some methods incor-
porate rich side information of networks, such as attributes of
nodes and edges [25, 34, 58], as well as the labels of nodes [26].
Third, some existing work models different types of objects using
networks with heterogeneous nodes and jointly learn embedding
vectors [12, 19, 51]. Network embedding has been shown to be
feasible in tacking problems such as link prediction [55], node clas-
sification [22, 52] and network alignment [14].

Despite superior performance and widespread application, many
popular ML models such as deep models remain mostly black boxes
to end users [13, 39, 47]. Existing methods for ML interpretation fo-
cus on explaining classification and prediction models. These meth-
ods mainly focus on: 1) explaining the working mechanisms or the
learned concept after model establishment [13, 27, 43]; 2) extracting
the important features or rules of how individual predictions are
made [3, 15, 38, 47]. Specifically, for the former category, somemeth-
ods select representative samples for each class to build the concept
of different classes [27, 33], while some methods utilize model com-
pression to extract or reformulate human-understandable knowl-
edge from complex models [9, 13]. Visualization techniques can
work with interpretation methods to facilitate the description of
data and exploration of sense-making patterns in networks. The
main idea is to project data into extremely low-dimensional (2D
or 3D) spaces. Some representative techniques include Principal
Component Analysis [1], nonlinear methods such as Isomap [53],
Laplacian Eigenmaps [6], t-SNE [41] and LargeVis [50].

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel post-hoc interpretation framework
to understand network embedding. We formulate the problem as
taxonomy induction from embedding results. We first build a graph

G from embeddings to encode the relations between embedding
instances into graph edge weights. The backbone of the taxonomy
is constructed as a tree by performing hierarchical clustering on
the graph G. The characteristics of the clusters in taxonomy are
identified as a multitask regression problem with tree-based regu-
larization. Quantitative evaluations and case studies on real-world
datasets demonstrate the effectiveness of the proposed framework.

Some future work towards interpreting network embedding are
as follows. First, more sophisticated hierarchical clustering methods
can be developed to extract more accurate structure hierarchies.
Second, in addition to the node attributes, interpretation based on
network structural characteristics can be further exploited. Third,
combining embedding interpretation with existing ML interpreta-
tion is also a promising direction.

ACKNOWLEDGMENTS
The work is, in part, supported by DARPA (#N66001-17-2-4031)
and NSF (#IIS-1657196, #IIS-1718840). The views and conclusions
contained in this paper are those of the authors and should not be
interpreted as representing any funding agencies.

REFERENCES
[1] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis. Wiley

interdisciplinary reviews: computational statistics (2010).
[2] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. 2008. Convex

multi-task feature learning. Machine Learning (2008).
[3] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja

Hansen, and Klaus-Robert MÃžller. 2010. How to explain individual classification
decisions. Journal of Machine Learning Research (2010).

[4] Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding for
collaborative filtering. In MLSP Workshop.

[5] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network dissection: Quantifying interpretability of deep visual representations.
In CVPR. IEEE.

[6] Mikhail Belkin and Partha Niyogi. 2002. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In NIPS.

[7] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
the Journal of Machine Learning Research 3 (2003), 993–1022.

[8] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.
2013. Recommender systems survey. Knowledge-based systems (2013).

[9] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model
compression. In KDD.

[10] Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini. 2005. Ontology learning
from text: An overview. Ontology learning from text: Methods, evaluation and
applications (2005).

[11] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-
sentations with global structural information. In CIKM. ACM.

[12] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and
Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-
tectures. In KDD. ACM.

[13] Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. 2015.
Distilling knowledge from deep networks with applications to healthcare domain.
arXiv preprint arXiv:1512.03542 (2015).

[14] Ting Chen and Yizhou Sun. 2017. Task-Guided and Path-Augmented Heteroge-
neous Network Embedding for Author Identification. In WSDM. ACM.

[15] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy
Schuetz, and Walter Stewart. 2016. Retain: An interpretable predictive model for
healthcare using reverse time attention mechanism. In NIPS.

[16] D Manning Christopher, Raghavan Prabhakar, and SCHÜTZE Hinrich. 2008.
Introduction to information retrieval. (2008).

[17] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2017. A Survey on Network
Embedding. arXiv preprint arXiv:1711.08752 (2017).

[18] Chris Ding, Xiaofeng He, and Horst D Simon. 2005. On the equivalence of
nonnegative matrix factorization and spectral clustering. In SDM. SIAM.

[19] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD.

[20] Mengnan Du, Ninghao Liu, Qingquan Song, and Xia Hu. 2018. Towards Explana-
tion of DNN-based Prediction with Guided Feature Inversion. In KDD.

[21] Linton C Freeman. 2000. Visualizing social networks. JoSS (2000).

[22] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD.

[23] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW.

[24] Cho-Jui Hsieh and Inderjit S Dhillon. 2011. Fast coordinate descent methods
with variable selection for non-negative matrix factorization. In KDD. ACM.

[25] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated attributed network
embedding. In SDM. SIAM.

[26] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. In WSDM. ACM.

[27] Been Kim, Cynthia Rudin, and Julie A Shah. 2014. The bayesian case model: A
generative approach for case-based reasoning and prototype classification. In
NIPS.

[28] Seyoung Kim and Eric P Xing. 2010. Tree-guided group lasso for multi-task
regression with structured sparsity. In ICML.

[29] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[30] Da Kuang and Haesun Park. 2013. Fast rank-2 nonnegative matrix factorization
for hierarchical document clustering. In KDD. ACM.

[31] Da Kuang, Sangwoon Yun, and Haesun Park. 2015. SymNMF: nonnegative low-
rank approximation of a similarity matrix for graph clustering. Journal of Global
Optimization (2015).

[32] Timothy La Fond and Jennifer Neville. 2010. Randomization tests for distinguish-
ing social influence and homophily effects. In WWW.

[33] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. 2015. Human-
level concept learning through probabilistic program induction. Science (2015).

[34] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
Attributed Network Embedding for Learning in a Dynamic Environment. CIKM.

[35] Zechao Li, Yi Yang, Jing Liu, Xiaofang Zhou, Hanqing Lu, et al. 2012. Unsupervised
feature selection using nonnegative spectral analysis.. In AAAI.

[36] Chih-Jen Lin. 2007. Projected gradient methods for nonnegative matrix factor-
ization. Neural computation (2007).

[37] Zachary C Lipton. 2016. The mythos of model interpretability. arXiv preprint
arXiv:1606.03490 (2016).

[38] Ninghao Liu, Donghwa Shin, and Xia Hu. 2017. Contextual Outlier Interpretation.
arXiv preprint arXiv:1711.10589 (2017).

[39] Ninghao Liu, Hongxia Yang, and Xia Hu. 2018. Adversarial Detection with Model
Interpretation. In KDD.

[40] Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang. 2012. Automatic
taxonomy construction from keywords. In KDD.

[41] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research (2008).

[42] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology (2001).

[43] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. 2017. Meth-
ods for Interpreting and Understanding Deep Neural Networks. arXiv preprint
arXiv:1706.07979 (2017).

[44] Roberto Navigli, Paola Velardi, and Stefano Faralli. 2011. A graph-based algorithm
for inducing lexical taxonomies from scratch. In IJCAI.

[45] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In KDD.

[46] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. ACM.

[47] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I
Trust You?: Explaining the Predictions of Any Classifier. In KDD.

[48] Blake Shaw and Tony Jebara. 2009. Structure preserving embedding. In ICML.
[49] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.

IEEE Transactions on pattern analysis and machine intelligence (2000).
[50] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. 2016. Visualizing large-

scale and high-dimensional data. In WWW.
[51] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Predictive text embedding

through large-scale heterogeneous text networks. In KDD. ACM.
[52] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In WWW.
[53] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geometric

framework for nonlinear dimensionality reduction. science (2000).
[54] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and

computing (2007).
[55] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-

ding. In KDD. ACM.
[56] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.

Community Preserving Network Embedding.. In AAAI.
[57] Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding

for clustering analysis. In ICML.
[58] Shenghuo Zhu, Kai Yu, Yun Chi, and Yihong Gong. 2007. Combining content

and link for classification using matrix factorization. In SIGIR.

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Notations
	2.2 Objectives of Network Embedding
	2.3 Taxonomy Induction as Interpretation

	3 Global-View Interpretation
	3.1 Embedding-based Graph Construction and Clustering
	3.2 Hierarchy Establishment from Embedding-based Graph

	4 Local-view Interpretation
	5 Experiments
	5.1 Experimental Settings
	5.2 Evaluation on Global-View Interpretation
	5.3 Evaluation on Local-View Interpretation
	5.4 Case Study

	6 Related Work
	7 Conclusion and Future Work
	References

