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ABSTRACT
Machine learning (ML) systems have been increasingly applied
in web security applications such as spammer detection, malware
detection and fraud detection. These applications have an intrin-
sic adversarial nature where intelligent attackers can adaptively
change their behaviors to avoid being detected by the deployed
detectors. Existing efforts against adversaries are usually limited
by the type of applied ML models or the specific applications such
as image classification. Additionally, the working mechanisms of
ML models usually cannot be well understood by users, which in
turn impede them from understanding the vulnerabilities of mod-
els nor improving their robustness. To bridge the gap, in this pa-
per, we propose to investigate whether model interpretation could
potentially help adversarial detection. Specifically, we develop a
novel adversary-resistant detection framework by utilizing the in-
terpretation of ML models. The interpretation process explains the
mechanism of how the target ML model makes prediction for a
given instance, thus providing more insights for crafting adversar-
ial samples. The robustness of detectors is then improved through
adversarial training with the adversarial samples. A data-driven
method is also developed to empirically estimate costs of adver-
saries in feature manipulation. Our approach is model-agnostic
and can be applied to various types of classification models. Our
experimental results on two real-world datasets demonstrate the
effectiveness of interpretation-based attacks and how estimated
feature manipulation cost would affect the behavior of adversaries.
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1 INTRODUCTION
Machine learning models are increasingly employed in security-
related applications such as spammer detection, malware detection
and biometric authentication, to distinguish malicious instances
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(e.g., spammers) from normal ones [4, 15, 36, 39]. Different from
traditional classification tasks, where data distributions are station-
ary and testing data usually follows the same distribution as the
training data, security-related applications involve the adversarial
competition between classifiers and malicious entities. Sophisti-
cated and adaptive adversaries can change their behavior patterns
to evade the detection in order to survive, thus undermining the
effectiveness of the deployed classifiers [50]. Actively preparing
the detectors against possible evolution of attacks, instead of pas-
sively reacting after discovering these changes, would improve the
functionality and robustness of real-world systems.

The emerging field of developing ML detectors under adver-
sarial settings has attracted increasing attentions. Existing meth-
ods can generally be categorized into three groups. First, some
previous work applies feature selection and feature engineering
methods [15, 31, 53]. These methods can build more accurate ML
classifiers, but they do not fully eliminate threats from the evolution
of adversaries. Second, some previous work formalizes the problem
as a game between detectors and adversaries [2, 9, 10, 17], but the
specific modeling process varies when different types of ML classi-
fiers are involved. Third, along with the popularity of deep neural
networks (DNNs) and its vulnerability to adversaries [48], various
approaches have been developed for DNNs to defend against adver-
saries [22, 28, 35, 38] using fast gradient method or its variations.
Some defensive strategies include adversarial training [22, 48], de-
fensive distillation [44] and feature squeezing [51]. However, tech-
niques on DNNs may not be directly applied to other classifiers
where gradients of the objective function are not directly obtain-
able, such as decision trees and nearest neighbor classifiers. In
addition, web security is moving beyond block-and-tackle tech-
niques towards understanding the vulnerability of web systems
and potential causes of attacks. By better understanding the un-
derlying working mechanism of machine learning models, more
robust detectors could be developed.

It has been observed that enabling interpretation of ML models
would significantly help analyzing the performance and function-
ality of models in many applications [18, 30, 46]. As we know,
although achieving superior prediction performance in many tasks,
MLmodels are usually being treated as black-boxes. To tackle this is-
sue, some recent work tries to identify how individual decisions are
made [3, 30, 46] or to provide intuitive descriptions to the concepts
learned by the models [16, 26]. Emerging attempts of interpreting
ML models open new opportunities for adversarial detection, since
understanding intrinsic mechanisms how ML models work could
be helpful in discovering the irrationality and weakness of models
in the decision making process. Motivated by these recent advances,
in this work, we investigate whether interpretation could provide
directions for enhancing the robustness of classifiers against adver-
saries. This is a challenging task due to the distinct characteristics
of the problem. First, it is still an under studied problem that how
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Figure 1: The framework of interpretation-based attack and defense based on evasion-prone samples. The dashed instances
in the third image represent probing samples to explore the decision regions of the target classifier.

the interpretation of ML models could be effectively modeled and
integrated for improving robustness of the models. A unified ap-
proach is needed as many learning models may have significantly
different working mechanisms. Second, in the process of training
adversary-robust classifiers, a large number of adversarial samples
need to be generated. This is usually very computationally expen-
sive. To tackle the aforementioned challenges, we propose a novel
adversarial detection framework with model interpretation.

Specifically, in this paper, we design a general and efficient ML-
based detection frameworkwhich is robust to adversaries.We proac-
tively predict adversarial samples based on a set of local interpreters
of the target detection model. The robustness of ML models is then
improved through adversarial training [22] with the adversarial
samples. The efficiency of this interpretation-based attack-defense
pipeline promoted by considering only the low-confidence regions
of ML classifiers. Our framework is model-agnostic as the inter-
pretation technique is general to any type of classifier. Finally, we
design a data-driven method to estimate the costs of perturbing dif-
ferent features. It is based on the observation that some features can
be easily manipulated by adversarial spammers without affecting
their malicious activities, while others are rarely touched by them.
The main contributions of this paper are summarized as follows:

• We propose a novel adversarial detection approach, in which ad-
versarial samples are crafted by incorporating the interpretation
of ML models. The proposed approach is general to be applied to
different types of classifiers.
• We design an efficient algorithm that reduces the number of ad-
versarial samples needed in training adversary-robust classifiers.
• We design a series of experiments to comprehensively evaluate
the effectiveness of attack and defense using different interpreta-
tion models and under different constraints.

2 PRELIMINARIES
Notations We first introduce the notations and application sce-
narios in this work. Let {X ∈ RN×M ,y ∈ RN } be the data about
user instances without considering adversaries, where N denotes
the number of users and M is the feature dimension. The vector
xn = X[n, :] (1 ≤ n ≤ N ) represents instance n in the feature
space, yn = y[n] is the label, and xb denotes the b-th feature. In
this work, we use social spammer detection [4, 15, 39, 50] as the
scenario to introduce our framework, but the methodologies can
be easily generalized to detection tasks against other malevolent

entities. We set yn = 1 for spammers and yn = 0 for normal users.
Then our goal is to build a spammer classifier f (x) : RM → {0, 1},
which is robust to future adversaries that may evolve (i.e., change
their features) to evade the detection of f . We use existing spammer
samples to predict the probable perturbation of adversaries. Let
x∗ be the adversary sample in feature space after behavior shifts
of the original x, where ∆x = x∗ − x denotes the perturbation in
the feature space corresponding to the evasive actions taken by
the adversary. An adversary attempts to make the detector classify
it as a normal account. We use X∗ ∈ RN

′×M to denote the data
matrix for adversary accounts, and N ′ is the number of adversaries
considered. It is worth noting that, in this paper, “adversaries" and
“spammers" both refer to the malicious accounts in systems, but ad-
versaries are a specific subset of spammers who actively attempt to
evade the inspection of detectors. In practice, adversaries can either
poison the training data before a classifier is established [1, 50] or
try to avoid being detected by the deployed classifier, while in this
paper we only focus on the latter scenario.
Adversarial Training We use adversarial training [22] as the
fundamental defensive technique to improve the robustness of
spammer classifiers against adversaries. The classifier is trained
with amixture of original and adversarial data instances. The overall
loss function L̃ is formulated as below:

L̃ = α · L( f ,X,y) + (1 − α ) ·
∑

x∗∈X∗
l ( f ,x∗, 1), (1)

where L and l measure dataset-level and instance-level classification
errors, respectively. The parameter α controls the tradeoff between
original and adversarial instances. We set α = 0.5 in our experi-
ments. The labels in the second term are fixed as 1 since they refer
to spammers. In deep neural networks, it has been shown that X∗
acts as the regularization term to increase model generality [48].
From another perspective, in our problem, X∗ contains additional
information of malicious instances after evolution, who are likely
to reduce the effectiveness of the existing classifier. Unlike previ-
ous adversarial classification models that target certain types of
classifiers [8, 10, 17, 54], the above formulation is independent of
the type of the classifier f to be deployed.

3 ADVERSARY STRATEGY BASED ON MODEL
INTERPRETATION

The adversarial training of detectors requires speculated adversar-
ial instances as part of the training data, which however are not



directly available. To solve this problem, we develop a framework of
interpretation-based adversary strategy to approximate the possible
adversarial actions of spammers. The framework is illustrated in
Figure 1. Given a classifier f , a special subset of spotted malicious
instances are chosen as the seeds (red points in the figure), and a
local interpreter is then built to explain why a seed x is regarded
as malicious by f . Adversarial samples x∗ are then generated by
perturbing each seed towards its evasion direction determined by
the interpreter. The perturbation cost is constrained by the capabil-
ity of adversaries. Finally, adversarial training with both original
data and adversarial instances is implemented to obtain the new
detector robust to adversaries.

3.1 Evasion-Prone Samples Selection
Spammer instances have different chances to evade detection, de-
pending on the decision confidence assigned by the classifier. A
classifier becomes vulnerable if many spammer instances fall into
its low-confidence decision regions, since some small perturbation
of these instances may result in misclassification of the detector.
We want to pay more attention to the evasion-prone (EP) samples
that are more likely to shift across the decision boundary. From the
spammers’ perspective, it requires less effort for them to wash the
maliciousness off the instances, thus making it feasible for control-
ling a large number of accounts. From the classifiers’ perspective,
evasion-prone accounts can provide more information about how
to improve the current model against the adversarial actions of
spammers. In this paper, EP samples are used as the seeds for gen-
erating adversarial samples. An example can be found in Figure 1,
where x1,x2 and x3 are evasion-prone samples, but not for x4.

We use the uncertainty scoreun [47] tomeasure the classification
confidence for a given instance xn assigned by f . The concrete form
ofun varies according to the specific type of classifiers. For example,
un = 1 − P (yn = 1|xn ) for probabilistic models or neural networks
whose output range is constrained, and P (yn = 1|xn ) could also
be the spammer class probability predicted by decision trees and
ensemble models [12]. For linear models, un = −(w ·xn +b), where
w and b are model parameters. In this work, we choose instances
with high un scores as seeds for generating adversarial samples.

There are two widely adopted assumptions about whether ad-
versaries have full knowledge of ML models. In some cybersecurity
problems, ML models on the server side are assumed to be confi-
dential [35, 49, 52]. In this case, attackers build their local substitute
model after making enough queries to the server, generate adversar-
ial samples on the local model, and rely on the transferability [48]
of the adversarial samples to have them still effective on the original
server models. In this paper, however, we aim to solve a classifier-
oriented problem, so the full knowledge of the classifier is assumed
to be known [2, 14, 17]. In this setting, the generated adversaries
can target the most critical vulnerabilities of the classifier and initi-
ate more threatening attacks. Note that our work can also be easily
applied in black-box attacks by simply approximating the original
model with the attacker-side substitute.

3.2 Local Interpretation Based Attack
For each evasion-prone seed, we need to find out its most sensitive
perturbation direction for crafting the adversarial sample. Most

Figure 2: Left: Gradient descent based evasions targeting an
SVM classifier with RBF kernels [6]. Right: An example of
decision regions of a three-class decsion tree classifier.

existing methods perturb seeds along the direction of local gradi-
ents of the loss function [6, 22, 42]. There are two problems for this
class of methods. First, broader conditions of classification regions
cannot be perceived by the local gradient, so gradient-based per-
turbation may be misled into unsupported regions. For example,
on the left side of Figure 2, instances in red and blue regions will
be recognized as spammers and normal users, respectively. The
two samples moving along the red arrows will not be correctly
directed towards blue regions to evade detection. Second, for some
classifiers such as decision trees and ensemble methods, we cannot
directly compute the gradient of loss function since a continuous
prediction function is not available. For example, as shown on the
right side of Figure 2, the outputs of the decision tree are simply
discrete predictions rather than continuous values, where gradients
are not directly obtainable.

We now introduce a new adversary samples crafting method
based on the interpretation of MLmodels. Recent advances inML in-
terpretation enable end users to understand and effectively manage
the systems built upon ML models. Adversarial attacks will be more
effectively generated if the operation mechanism of ML models is
utilized. Therefore, we propose to simulate attacks under the guid-
ance of the model interpretation about how input data instances are
classified as benign or malicious. The proposed method is model-
agnostic and can be applied to estimate perturbation direction for
any model.

Formally, given a seed instance xs and the global classifier f ,
we define an explainable model h ∈ H to locally approximate the
prediction mechanism of f around xs . Here H denotes the class
of explainable models, such as decision trees and linear models, or
local vector flows constructed by Parzenwindow estimators [3]. The
output of h(·) : RM → R measures the malicious score of the input
instance. Let l ( f ,h,xs ) measure how close h is in approximating
f in the space around xs , then the explanatory model h can be
obtained by solving argminh∈H l ( f ,h,xs ) + β · c (h), where c (h)
measures the complexity of h. If h is chosen from linear classifiers,
for example, then we can choose c (h) = ∥w∥1, where w denotes
the weight vector of linear models. In this paper, we define

l ( f ,h,xs ) =
∑
x′∈X′

exp(
−∥xs − x′∥22

η2
) ( f (x′) − h(x′))2, (2)

which is a weighted sum of approximation errors over a set of
instances x′ sampled around the seed xs , and η is the parameter
controlling weight decay (parameter settings are discussed in exper-
iments) [46]. The evasion-prone seeds, as we choose in the previous
section, facilitate the interpretation process, because they are close



to the classification boundary so that it is easier when sampling x′
to get both positive and negative labels for classification problems.
The existence of negative samples prevents perturbation from go-
ing to unsupported regions shown in Figure 2. After obtaining the
local explainable model h, we rely on it to provide directions about
how to perturb the seed xs .

Attack Strategy:With the local explanatorymodelh thatmeasures
the maliciousness of a given instance, the adversarial sample x∗
corresponding to the seed xs can be obtained by solving:

x∗ = argmin
x

h(x), s .t . x ∈ Ω(xs ) , (3)

where Ω(xs ) restricts the disturbance range around xs . The output
h(x∗) is minimized so that the malicious score of the adversarial
sample is maximally suppressed, which means we assume adver-
saries will try to stay as safe as possible by spending all of their bud-
get. This strategy is different from the one applied in [14, 48], where
adversaries try to minimize the perturbation as long as evasions are
achieved. It is mainly because: (1) the former strategy considers the
practical situation where adversaries have limited budget but want
to achieve long-term survivals; (2) adversarial spammers assigned
with low malicious scores are more threatening to the detector, so
they are more helpful for model adjustment. The motivations of our
strategy are that, on one hand, interpretation-based strategy has a
broader understanding of f than gradient-based methods, so it can
effectively lead perturbation into regions of lower maliciousness
scores. On the other hand, the locality of h ensures its proximity
to the global model f around xs , so that the adversarial samples
targeting h are likely to be transferred to f [49].

Evasion Constraint: The constraint is defined as Ω(xs ) = {x :
d (x,xs ) ≤ ζ }. We will use l2 and l1 norms as two distance metrics
for d ().
• l2 norm constraint: We first use the commonly applied l2 norm
d (x,xs ) = ∥x − xs ∥2 to constrain attacks. Here we do not differ-
entiate among the varying costs in perturbing different features.
We consider this constraint in order to compare with other state-
of-the-art attacking methods in terms of effectively choosing the
perturbation direction. For the l2 norm constraint, we will use
LASSO as the local interpretation model, i.e., h is chosen from
linear models and c (h) = ∥w∥1.
• l1 norm constraint: We use l1 norm constraint to model more
practical attacking scenarios, where Ω(xs ) = {x : ∥ (x − xs ) ◦
e∥1 ≤ ζ } and ◦ denotes element-wise multiplication. Here we
assume each adversary is assigned with a universal cost budget ζ .
And eb ∈ e denotes the effort cost for one unit change of feature
xb . Adversary workers are constrained by their capability, i.e., the
maximum total effort they would like to spend in manipulating
each instance. The cost of changing the value of xb can be related
to the feature’s robustness [41, 53]. A larger eb suggests it is
effort-consuming to change xb for reversing the classification
result. For l1 norm constraint, we will try two local interpretation
models: LASSO and Vector Flow model [3]. Since LASSO is a
linear predictor, for each seed and its local interpretation vector
w, only the feature b with the largest |wb |

eb
will be manipulated.

For Vector Flow model, it is constructed with a number of Parzen
windows to the samples in decision regions. The problem to solve

is formulated as:

x∗ = argmin
x

∑
i,yi=1

kσ (x − x′i ) −
∑

i,yi=0
kσ (x − x′i )∑

i
kσ (x − x′i )

s .t . ∥ (x − xs ) ◦ e∥1 ≤ ζ ,

(4)

where kσ (·) is the Gaussian kernel, and x′i denotes the sam-
ple for building the local interpretation model. The only hyper-
parameter σ can be determined through validation, where some
samples are chosen to build Parzen windows and some others are
generated for validation. We adopt the iterative gradient descent
algorithm [6] to solve for x∗ in Equation 4.

3.3 Adversary Costs Estimation
In practice, different features have varying costs to be manipulated.
The costs refer to the profit loss of attackers or the efforts paid
for initiating adversarial actions. Such costs originate from several
aspects. First, one malicious worker in real world usually controls
a large number of spammer accounts [5, 21]. It is harder to mimic
certain aspects of normal users’ behaviors, such as having diverse
content in post streams or creating a lot of reviews recognized as
useful by other customers. Second, spammers have different goals
from legitimate users, in terms that they try to spread malicious
or false content to deceive others and gain profit. For example,
spammers seldom interact with other users online and they tend to
include many URLs in their posts. Third, some designed features
in traditional spammer detection are simply shallow artifacts ex-
tracted from datasets rather than intrinsic properties or behavior
representations of accounts. Spammers can easily manipulate these
features without much effort.

To estimate feature robustness, a straightforward way is to find
the closed-form formula for each feature and explicitly compute
the difficulty of changing its value [17, 53], or to unify the cost
to a constant value [11]. These approaches, however, can only be
applied to a limited number of straightforwardly designed features.
Therefore, we design an empirical measure by relying on evasive
spammers themselves to indicate the difficulty of controlling differ-
ent aspects of their behaviors. We estimate an adversary’s cost of
manipulating feature xb as:

eb =


1/|xepb − x

+
b |, if siдn(xepb − x

+
b ) = siдn(x

−
b − x

+
b )

eMAX , Otherwise
, (5)

where x−b denotes the average value of xb for normal instances, xepb
is averaged over evasion-prone samples, and x+b averages xb for
spammers without the evasion-prone samples. The intuition of this
equation is that, if evasion-prone samples have significantly shifted
theirxb values tomake them lessmalicious, then it indicates the cost
of manipulating xb is small, and vice versa. In addition, if the change
direction of xepb deviates from that of normal users, then we assume
spammers are not willing to manipulate xb and we set eb with a
large value eMAX . In our experiments, we simply set eMAX = ∞.
More complex scenarios such as the correlation between features
are beyond our scope in this study. We use evasion-prone samples
here because they possess relatively strong incentives to evade the
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Figure 3: CDF of example features for overall non-spammers, lazy spammers and EP spammers in the Twitter dataset.

detection and have already taken some actions, so they provide
information of how spammers may evolve.

Visualizations of the shift of EP instances are depicted in Fig-
ure 3, where the cumulative distribution function (CDF) of some
example features are plotted. We can observe that, for num_fwer
(number of followers), fwing_change (change speed of followings)
and len_name (length of username), EP spammers are more sim-
ilar to normal users as their CDF curves are closer than the lazy
spammers. Especially, we find that |xepb − x

+
b |/|x

−
b − x

+
b | ≈ 85% for

xb = fwing_change, so fwing_change may not be a robust feature
with respect to potential attacks. However, for ratio_reply, the plot
shows that the distribution difference becomes more remarkable for
EP spammers, so it is not preferred to be manipulated by spammers.
The feature manipulation costs are taken into consideration in our
attack strategies under l1 norm constraint. The effectiveness of the
attacks, defenses and the roles of different features will be further
discussed in our experiments.

4 EXPERIMENTS
In this section, we evaluate the performance of the proposedmethod
on several real-world datasets. First, we will introduce the experi-
mental settings. Second, wewill measure the effectiveness of attacks
generated by the proposed method compared with other baseline
attacking methods. Third, we will measure the performance of ad-
versarial training using the proposed method compared with the
baseline defending methods.

4.1 Experimental Settings
Here we introduce the datasets extracted from several web plat-
forms applied in our experiments, the basic classifiers as targets of
adversaries, and the baseline methods for dealing with adversaries.

Datasets: We use two public datasets for evaluation, including the
Twitter dataset [31] and the YelpReview dataset [40]. The Twit-
ter dataset, collected via social honeypot techniques, consists of
the profile information and post streams of content polluters and
legitimate users. The YelpReview dataset consists of reviewers’ in-
formation and review posts about restaurants on Yelp. The labels
of Twitter users and Yelp posts are available. We set Yelp reviewers
with more than 10% spam posts as spammers. After preprocessing,
for Twitter dataset, we have 41, 499 users and each user instance has
28 features, and for YelpReview dataset we have 16, 941 reviewers
and each reviewer has 16 features.

Target Models: Spammer detection using traditional classification
models has been extensively studied [4, 15, 31, 32]. Following pre-
vious work, to cover diverse types of models, we apply Logistic

Regression (LR), Support Vector Machines (SVM), Random Forest
(RF), Neural Network (NN) and Ensemble method (ESM) to detect
spammers in our datasets. The performances of different models are
shown in Table 1 (outside parentheses). The parameters of the mod-
els are determined via 5-fold cross-validation. YelpReview dataset
is more complicated than Twitter, so the resultant classifiers for
YelpReview are more complex. For examples, the weights of regu-
larization terms in LR and SVM are set smaller for YelpReview, and
the number of layers and the size of each layer are also larger in
NN. These trained classifiers will be targeted by various attacking
strategies, and will be improved by defensive methods.

Baseline Methods: The methods applied in our experiments can
be categorized into two classes, i.e., attacking methods and defen-
sive methods, as introduced below.
• Gradient Descent Attacking method (GDA) [6]: An attacking
method moving samples along the direction of gradient vectors.
The gradients or subgradients of the loss function are needed.
Similar attacking strategies can also be found in [42].
• Fast Gradient Sign method (FGS) [22]: An attacking method
which perturbs a legitimate sample x to x + ϵsiдn(∇xl ( f ,x,y)),
where siдn(∇xl ( f ,x,y)) denotes the perturbation direction de-
termined by the the sign of the cost function’s gradient. FGS has
been widely applied in deep neural network models.
• Per-worker Optimal Evasion (POE) [50]: An attacking method
where different combinations of feature perturbation are tested
until the target classifier misclassifies the perturbed instance or
the maximum number of attempts is reached.
• Defensive Distillation (DD) [44]: A defensive method by transfer-
ing the knowledge learned by a complex model f to a compact
model f ′. The soft labels generated from complex models f are
used to train the new models [23]. It has been shown that, by
making f ′ have the same model structure with f , the distilled
model f ′ is more robust to adversarial samples than f .

However, it is hard to directly apply gradient-based methods (e.g.,
GDA and FGS) to attack tree-based models or ensemble models.
Motivated by the black-box attacking strategy introduced in [43],
we first approximate RF and ESM classifiers with a neural network
as the substitute and then apply GDA and FGS for attacking.

4.2 Effectiveness of the Attacking Strategy
We evaluate the effectiveness of the proposed method by checking
whether the crafted adversarial samples could successfully evade
the detection of target classifiers. For local interpretation, we set
dpos−neд/

√
M as the variance of multivariate Gaussian distribu-

tions for sampling x′ around each seed, where dpos−neд is the
seed’s distance to the closest non-spammer instance and M is the



Twitter YelpReview

Prec Recall F1 Prec Recall F1

LR 0.910 (0.867, 0.869) 0.889 (0.914, 0.915) 0.899 (0.890, 0.892) 0.794 (0.788, 0.776) 0.854 (0.890, 0.912) 0.823 (0.836, 0.838)
SVM 0.936 (0.911, 0.907) 0.928 (0.946, 0.944) 0.932 (0.929, 0.925) 0.905 (0.893, 0.887) 0.882 (0.890, 0.898) 0.893 (0.892, 0.893)
RF 0.952 (0.952, 0.952) 0.962 (0.968, 0.965) 0.957 (0.960, 0.959) 0.988 (0.989, 0.985) 0.951 (0.961, 0.964) 0.969 (0.975, 0.974)
NN 0.894 (0.879, 0.890) 0.958 (0.965, 0.968) 0.925 (0.920, 0.927) 0.937 (0.858, 0.905) 0.884 (0.919, 0.950) 0.910 (0.887, 0.927)
ESM 0.944 (0.927, 0.925) 0.943 (0.956, 0.961) 0.944 (0.941, 0.943) 0.970 (0.945, 0.959) 0.940 (0.956, 0.965) 0.955 (0.951, 0.962)

Table 1: Spammer detection performance of the proposed framework. Each triple represents: performancewithout adversarial
training, performance with l2 adversarial training, and performance with l1 adversarial training.
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Figure 4: L2 attack effectiveness evaluation with different perturbation distances on different types of classifiers.
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Figure 5: Attack effectiveness evaluation with different per-
centage of evasion-prone samples.

number of features. The weight decay η is set as +∞ in all experi-
ments, so we treat all samples x′ equally. The baseline attacking
methods are implemented for comparison.

4.2.1 Effect of evasion-prone samples selection. To show the
effect of applying evasion-prone samples, we measure the effective-
ness of attacks with and without using evasion-prone samples as
the seeds. The results averaged on five runs are shown in Figure 5.
The x axis represents the portion of top spammers used as seeds for
generating adversarial samples, and the y axis shows the detection
rates of the target classifier. Data instances of high uncertainty
scores are regarded as evasion-prone. Instances are ranked accord-
ing to the uncertainty score, where the top ones have higher scores.
For better visualization, the adversarial perturbation distance is
fixed as 0.1 × d

avд
pos−neд for Twitter data and 0.2 × d

avд
pos−neд for

YelpReview data (except 0.04 × davдpos−neд in SVM), where davдpos−neд

is the average of distance from seeds to their closest non-spammer
neighbors. The figures show that, as we include more instances
whose labels are more certain to the classifier, the success rate of
evasion by the adversarial samples decreases (i.e., the detection
accuracy of the classifier increases). If we randomly choose seeds
for adversaries crafting, the evasion rate (not shown in figures) is
usually less than 50%. Therefore, carefully choosing the seeds for
generating adversarial samples will increase the effectiveness of
attacks, thus providing more information about the weakness of
the classifier.

4.2.2 Effectiveness of l2 attack. In this part, we explore how ef-
fectively the interpretation-based attack strategy under l2 norm
constraint would impair the performance of classifiers. We will
compare the proposed method with baseline methods on differ-
ent classifiers. For visualization, we choose top 4% evasion-prone
samples as seeds for SVM and RF, 6% for ESM, 9% for NN and LR,
which are applied to all attacking methods. The results are shown
in Figure 4. The x coordinate means using x × davдpos−neд as the per-
turbation distance. In general, the proposed method outperforms
the baseline methods as it achieves greater evasion rate (i.e., lower
classification accuracy). Its performance is stable across different
types of classifiers as the interpretation process is model-agnostic.
As the perturbation distance increases, more adversarial samples
evade the detection of the target classifier. The proposed method
has similar performance as baseline methods (e.g., GDA) for some
classifiers (e.g., LR, SVM). It indicates that in certain cases the gra-
dient vector may also act as the local interpreter. In some cases,
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Figure 6: L1 attack effectiveness evaluation with different perturbation distances on different types of classifiers.
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Figure 7: Defense effectiveness evaluation of proposedmeth-
ods compared to Defensive Distillation.

due to randomness, the POE method achieves good performance
when the perturbation distance is small, but is outperformed by
some of other methods as perturbation distance increases. The per-
formances of GDA on RF and ESM are worse than those on other
classifiers. The probable reason could be that they are actually not
directly attacking the original classifiers but the substitute models.

4.2.3 Effectiveness of interpretation-based l1 attack. We evaluate
the attack performance of the proposed method with different local
interpretation models under the l1 norm constraint. Here feature
manipulation costs are considered. The results are shown in Fig-
ure 6. Here the “l1-l2" method first generates adversarial samples
under l2 constraint, and then normalize the samples with respect
to the costs specified by ζ . It is not a surprise that l1-lasso and
l1-VF significantly outperform l1-l2, since the former ones select
features of small costs to manipulate while the latter wastes effort
in perturbing robust features which are of little reward. In general,
the attack effectiveness of l1-lasso is greater than that of l1-VF as
l1-lasso achieves lower detection rates on more classifiers. Though
not shown in the figures, l1-lasso is more “concentrated" than l1-
VF in terms that it is more focused on manipulating only a small

number of features, and these features have low cost eb . Let pb
denote the probability that feature b is perturbed by adversaries
and p = [p1, ...,pB ], entropy (plasso ) = 0.11 and 1.3 respectively in
Twitter and YelpReview data, while entropy (pV F ) = 1.28 and 1.87
for the two datasets. After inspecting the adversarial samples, we
found that for Twitter data, nearly all adversaries choose to perturb
the f winд_chanдe feature. This is because its eb is small (i.e., the
feature is easy to be manipulated) and the gradient with respect to
this feature is large (i.e., classifiers heavily rely on this feature to
make decisions). In practice, slowing down the speed of following
more users will not significantly affect the malevolent activities of
spammers, and this feature tends to be controlled by adversaries.
For YelpReview data, the manipulated features are relatively diverse
across different samples. Some examples include speedReviews and
reviewCount. It indicates that spammers can suppress their posting
activities to a safety zone, which is relatively easier than chang-
ing other features such as usefulCount and scoreDeviation as these
features are not fully under spammers’ control.

4.3 Effectiveness of the Defensive Strategy
To evaluate the effectiveness of defense against adversaries, we
will check whether the adversarial samples can be captured by the
new classifiers after applying defensive strategies, and whether the
classification results on the original data are not negatively affected
by the shift of decision boundary. Some approaches like Defensive
Distillation are already defensive methods, while the correspondent
defensive method for an attacking strategy is to use its adversarial
samples as part of the retraining data to obtain new classifiers.

4.3.1 Comparison to Defensive Distillation. We first compare
the proposed method to Defensive Distillation concerning the abil-
ity to capture adversarial samples. Both l2 and l1 (using LASSO and
VF as the local model) norms are involved. The results are shown in
Figure 7. The perturbation distance in l2 attack is 0.1×d

avд
pos_neд for

Twitter and 0.3 × davдpos_neд for YelpReview, while the perturbation
cost in l1 attack is 0.4 for Twitter and 0.7 for YelpReview, except
that the perturbation in SVM is further multiplied by 0.2 for visual-
ization. In general, the capture rate of adversarial samples increases
after applying defensive methods. The proposed method has better



0.75

0.66

0.62

0.46

0.88

0.68

0.81

0.75

0.89

0.87

0.90

0.82

0.95

0.93

0.94

0.78

Prop

GDA

POE

FGS

Prop GDA POE FGS

Twitter

0.92

0.79

0.79

0.77

0.88

0.90

0.78

0.80

0.83

0.75

0.91

0.73

0.93

0.90

0.81

0.92

Prop

GDA

POE

FGS

Prop GDA POE FGS

YelpReview

Figure 8: Evaluation of adversarial training effectiveness through
cross attacking and defense using l2 attacks.
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Figure 9: Evaluation of adversarial training effectiveness through
cross attacking and defense using l1 attacks.

overall performance than Defensive Distillation. DD has good per-
formance in NN and LR (could be seen as a one-layer NN), while it
does not perform well in RF and ensemble methods. The proposed
method is well adapted to a wide range of classification models,
so it is helpful to proactively predict the evolution of malevolent
entities and take it into consideration for classifier reconstruction.

4.3.2 Effectiveness of Adversarial Training. We first re-evaluate
the performance of new models on the old test data, to check
whether the prediction results are affected after adversarial training.
Other settings remain the same as the previous part. The results are
shown in Table 1. The performances before and after using adversar-
ial training are shown inside and outside parentheses, respectively.
Compared with the original classifiers, the new classifiers have
higher Recall and lower Precision, because the adversarial samples
used in training expand the region in which an instance is classified
as a spammer. The F1 scores do not significantly change. RF has
the best detection performance and shows good compatibility to
adversarial training. In addition, the increases in Recall and F1 score
using l1 adversarial samples are greater than using l2 samples. The
possible reason is that the consideration of feature manipulation
costs leads the attacks towards the distribution of crafty spammer
instances that were missed by the old classifiers.

We then compare the defense performance of adversarial training
using adversarial samples generated by different attacking methods.
We adopt the cross-attack schema as the evaluation framework [42].
The results are shown in Figure 8 and Figure 9 for l2 and l1 con-
strained attacks, respectively. Each row indicates the adversarial
samples used for retraining classifiers, while each column corre-
sponds to the attacking strategy to evade the retrained classifiers.
Each entry records the average detection rate of attacking samples
over all types of classifiers. In Figure 8, we observe that the clas-
sifiers trained using the proposed method is more robust to other
attacks (the entry values in the Prop row are larger), and the attack
initiated by the proposed method is more threatening to the new
classifiers (the entry values in the Prop column are smaller). Note
that high detection rates on diagonal entries are due to the fact that
the training and test adversarial samples are drawn from the same

distribution, so they do not necessarily indicate good defensive per-
formances. An interesting phenomenon observed from Figure 9 is
that, although l1V F does not achieve comparable attacking success
as l1lasso , it sometimes has better defensive performance. This is
possibly because, as we discussed using entropy in 4.2.3, l1lasso
concentrates on manipulating only the most vulnerable features to
gain the greatest attack reward. However, the features manipulated
by l1V F are more diverse, meaning that more attacking scenarios
are considered. The relation between attack and defense is like that
of lance and shield. Effective attacks provide valuable guidance to
defense deployment, but an effective defense method should cover
various risk scenarios.

5 RELATEDWORK
Classification models are increasingly used in security-related ap-
plications like spam filtering, biometric authentication and malware
detection [4, 15, 25, 36, 39]. These applications have an adversarial
nature since sophisticated malicious entities may manipulate their
behaviors to evade being detected. Traditional ML-based detectors
do not consider such adversarial settings. There are two forms of
attacks, evasion attacks and poisoning attacks [7, 50]. In the former
case, adversaries modify their behavior to fool the established sys-
tem, while the latter tampers with the training data. We focus on
evasion attacks in our paper.

Adversarial detection has been investigated using game theories,
where adversaries and the classifier act as opposite players [11, 17].
Typically, the single-shot version of adversarial classification game
is considered, and an equilibrium is achieved to obtain the solu-
tion [10]. A problem with these methods is that they are usually
designed specifically for certain type of classifiers. As deep learning
(DL) has become popular on many ML problems, recent studies
show that DL is vulnerable to adversarial samples [14, 24, 48]. Fast
gradient sign method is one of the most popular approaches for cre-
ating adversarial instances [22, 38]. Some other attacking methods
include box-constrained L-BFGS method [48], iterative least likely
method [28], Jacobian-based saliency map attack [45], adversar-
ial samples generation based on an ensemble of deep models [35].
Some typical defensive methods include defensive distillation [44],
region-based classification [13] and feature squeezing [51].

Despite widespread applications, someMLmodels remainmostly
black boxes to end users. Preliminary work on interpretation for
ML models can be divided into two categories: 1) interpreting or
reorganizing the working mechanisms or the learned concept of the
model [12, 20, 27, 33, 37]; 2) extracting the signaling features or rules
based on which individual predictions are made [3, 16, 19, 34, 46].
For the former category, example-based explanation is one of the
most widely used approaches [26, 27, 29]. For prediction instances
interpretation, the goal is to locally approximate the behavior of
prediction models [3], or to select significant features and rules that
lead to the prediction results [30, 46].

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel and general adversarial detection
framework by utilizing the interpretation of ML models. The frame-
work applies the adversarial training method, where anticipated
adversarial samples are used as part of the training data. We utilize



the local interpretation of detection models to unveil the weakness
of existing detectors and provide directions for adversarial per-
turbation. The efficiency of the proposed framework is improved
through using evasion-prone instances as the seeds which are then
perturbed for crafting adversarial samples. We consider l2 and l1
norms as distance measures to form the perturbation constraint. An
empirical measure is designed to estimate the cost of manipulating
each feature. Experiments on spammer detection are conducted to
evaluate the effectiveness of attack and defense of the proposed
framework. Our future work includes using model interpretation
for developing defensive strategies, extending current work to deal
with high-dimensional raw data, and adapting the methods for
datasets with relational links between instances.
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